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The self-similar evolution to turbulence of a multi-mode miscible Rayleigh–Taylor
(RT) mixing layer has been investigated for Atwood numbers 0.03–0.6, using an
air–helium gas channel experiment. Two co-flowing gas streams, one containing air
(on top) and the other a helium–air mixture (at the bottom), initially flowed parallel
to each other at the same velocity separated by a thin splitter plate. The streams
met at the end of the splitter plate, with the downstream formation of a buoyancy
unstable interface, and thereafter buoyancy-driven mixing. This buoyancy-driven
mixing layer experiment permitted long data collection times, short transients and
was statistically steady. Several significant designs and operating characteristics of the
gas channel experiment are described that enabled the facility to be successfully run
for At ∼ 0.6. We report, and discuss, statistically converged measurements using digital
image analysis and hot-wire anemometry. In particular, two hot-wire techniques were
developed for measuring the various turbulence and mixing statistics in this air–helium
RT experiment. Data collected and discussed include: mean density profiles, growth
rate parameters, various turbulence and mixing statistics, and spectra of velocity,
density and mass flux over a wide range of Atwood numbers (0.03 � At � 0.6). In
particular, the measured data at the small Atwood number (0.03–0.04) were used to
evaluate several turbulence-model constants. Measurements of the root mean square
(r.m.s.) velocity and density fluctuations at the mixing layer centreline for the large At

case showed a strong similarity to lower At behaviours when properly normalized. A
novel conditional averaging technique provided new statistics for RT mixing layers by
separating the bubble (light fluid) and spike (heavy fluid) dynamics. The conditional
sampling highlighted differences in the vertical turbulent mass flux, and vertical
velocity fluctuations, for the bubbles and spikes, which were not otherwise observable.
Larger values of the vertical turbulent mass flux and vertical velocity fluctuations
were found in the downward-falling spikes, consistent with larger growth rates and
momentum of spikes compared with the bubbles.
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1. Introduction
Rayleigh–Taylor (RT) instability (Taylor 1950; Rayleigh 1884) occurs when a heavy

fluid is placed over a light fluid in a gravitational field. Infinitesimal perturbations
at the interface initially grow exponentially according to linear stability theory
(Chandrasekhar 1961), and eventually saturate (Youngs 1984). Once in the nonlinear
saturation regime, dimensional analysis suggests that the RT mixing half-width h
grows quadratically with time according to the relation, h ∝ gt2, where t is time
and g is the acceleration due to gravity. However, experiments and computations
(Anuchina et al. 1978; Youngs 1984) suggest that a more complete description is
given by

hb,s = αb,s Atgt2 (b: bubble; s: spike), (1.1)

where the Atwood number At denotes the non-dimensional density difference defined
by At ≡ (ρ1 − ρ2)/(ρ1 + ρ2); ρ1 and ρ2 are the densities of air (heavy fluid) and
air–helium mixture (light fluid) employed in the present work; hb and hs are the
heights above/below the initial density interface of the edge of the mixing region: the
‘rising’ edge denoted as bubbles, while the ‘falling’ edge is designated as spikes; αb

and αs denote observable growth rate parameters (for the bubbles and spikes). For
low Atwood numbers ( < 0.1), the RT mixing layer is practically symmetric (hb ∼ hs)
and α is usually taken as a constant (Snider & Andrews 1994; Dimonte & Schneider
2000; Ramaprabhu & Andrews 2004), i.e. αb =αs = α. However, for high Atwood
numbers ( � 0.1), the RT mixing layer becomes increasingly asymmetric about the
position of the initial density interface. Measured values of αb and αsare found to
be different (Dimonte & Schneider 1996), such that αb < αs , with αs being a function
of the Atwood number and αb being approximately constant (Dimonte & Schneider
1996; Ramaprabhu & Andrews 2004).

Our main application of interest is the implosion phase of an inertial confinement
fusion (ICF) capsule, where RT mixing is formed at high Atwood numbers (Clarke,
Fisher & Mason 1973; Betti et al. 2001; Atzeni & Meyer-ter-Vehn 2004). However,
in the compressible ICF problem, turbulent mixing is a low-Mach-number process
and our incompressible and miscible experiment captures the same inertial dynamics
associated with the fluid motion. However, since the present experimental set-up
can be used over a wide range of Atwood numbers (0 � At � 0.75), it mimics a
variety of other applications such as atmospheric instability associated with cold air
overlaying warm air in the atmosphere (Molchanov 2004), or similar situations with
cold and warm water in oceans, rivers or estuaries (Cui & Street 2004), buoyant
jets (Marmottant & Villermaux 2004) and in finger-like ejecta of stellar materials
present in the remnants of a young supernova (Gull 1975). Previously, several
experiments have been performed to study high-Atwood-number RT mixing: the
early experiments accelerated an initially stable stratified mixture of two fluids using
various mechanisms like compressed air cans, rubber/elastic/bungee cords (At ∼ 0.99)
(Lewis 1950; Allred & Blount 1954; Emmons, Chang & Watson 1960; Cole & Tankin
1973; Ratafia 1973). The majority of these early experiments were single- or few-mode
experiments. Subsequent experiments had multi-mode initial perturbations: Read
(1984) used a drop-tank with At ∼ 0.231–0.997 that was accelerated using rockets
(Rocket Rig); and, in a similar experiment, Dimonte & Schneider (1996) studied a
wide range of At (0.1304–0.961) using a linear electric motor (LEM) to accelerate
the tank. Linden et al. (1994) and Dalziel, Linden & Youngs (1999) began with a
heavy fluid over a light fluid, the two fluids being separated by a plate. The plate was
withdrawn and the buoyancy-driven mixing ensued between the two fluids. All these
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experiments, with the exception of Linden et al. (1994) and Dalziel et al. (1999) were
immiscible, involved short data collection times (∼milliseconds), and used backlit
photography techniques that limited investigations to RT mixing layer width and
growth rate parameters. Measurements could not be made of detailed turbulent
statistics, i.e. Reynolds stresses, density–velocity correlations and their spectra, all of
which lie at the heart of modern turbulence models for RT mixing.

We use an air–helium gas channel experimental facility (Banerjee & Andrews 2006)
that permits long data collection times, short transients, and is statistically steady.
Here we report work to measure the self-similar evolution of mixing at density
differences over 0.03 � At � 0.6, using digital image analysis and hot-wire anemometry.
In particular, digital image analysis is used to measure statistically convergent RT mix
density profiles (Snider 1994; Snider & Andrews 1994; Banerjee & Andrews 2006)
at Atwood numbers of 0.04, 0.26, 0.47 and 0.6. In addition, we have also developed
two different hot-wire techniques (Banerjee & Andrews 2007; Kraft, Banerjee &
Andrews 2009) to measure various turbulent statistics inside the air–helium RT
mixing layer. The first technique modifies the work of Rose (1973), and uses a multi-
position multi-overheat (MPMO) single-wire technique (Banerjee & Andrews 2007) as
a means to measure fluctuations of density, velocity and density–velocity correlations
in our RT mixing layer at small and intermediate Atwood numbers (At � 0.25). The
second technique uses simultaneous 3-wire/cold-wire anemometry (S3WCA) coupled
with the concept of temperature as a fluid marker. The S3WCA has been used to
measure instantaneous statistics inside the air–helium RT mixing layer (Kraft et al.
2009), and is suitable for large Atwood numbers of >0.25. We use results from the
S3WCA technique to report the first detailed statistical measurements in a large-
Atwood-number (At =0.6) miscible RT mixing layer. Banerjee & Andrews (2006)
presented multi-position single hot-wire (Bruun 1972) validation measurements at a
small Atwood number of 0.035, that gave a late-time value for the growth parameter
α( = αb = αs) of 0.065–0.07. Here we report the measurement of αb,s up to At = 0.6
that employs four different measurement methodologies and formulas, and we show
how the resulting values are essentially the same measurement, thus closing the
loop on a long-standing source of confusion. Both the hot-wire methods used in
the current work improve over the multi-position single-wire (MPSW) technique
(Banerjee & Andrews 2006), by simultaneously measuring both density and velocity
statistics, while our previous work gave only velocity data. We also report a novel
conditional averaging technique that provides the first conditional statistics for RT
mixing layers by separating the bubble (light fluid) and spike (heavy fluid) dynamics.
The conditioning highlights differences in the vertical turbulent mass flux and vertical
velocity fluctuations for the bubbles and spikes, which are not otherwise observable.
Larger values of the vertical turbulent mass flux and vertical velocity fluctuations
were found in the downward-falling spikes, which is consistent with the larger growth
rates and momentum of the spikes compared with the bubbles.

2. Experimental set-up and procedures
A schematic of the experimental set-up is shown in figure 1. Two gas streams flow

parallel at the same velocity (no shear) separated by a thin splitter plate. The top
stream is air (heavy), at density ρ1, while the bottom stream is a mixture of air and
helium (light) at density ρ2. The streams meet at the end of the splitter plate leading
to formation of an unstable interface, and a buoyancy-driven RT mixing layer. This
statistically steady buoyancy-driven mixing experiment, with miscible fluids, allows
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Figure 1. Schematic of the air–helium (He) gas channel facility (0<At < 0.75).
(a) Side view; (b) top view.

long data collection times, short transients, and is capable of large-Atwood-number
studies (0 � At � 0.75) by altering the proportion of helium in the helium–air mixture
in the bottom stream.

As shown in figure 1, the apparatus consists of inlet and exit plenums connected by
a Plexiglas flow channel that serves as the test section. The test section is 2.0 m long,
1.2 m wide and 0.6 m deep, and is scaled up from the water channel experiment (same
aspect ratio) reported in Snider & Andrews (1994) and Ramaprabhu & Andrews
(2004). Snider & Andrews (1994) studied the influence of the distance between the
front and back walls on the development of the RT mixing layer, and found that
the width should be at least half of the depth to avoid late-time interference with the
development of large structures. Moreover, they indicated that the RT mixing width
is not affected by the top and bottom walls until the channel is at least 80 % filled.
Both criteria were fulfilled in the present experiment. The inlet plenum is divided
into two sections, connected to separate direct drive air blowers (1800 CFM at 1.5 in.
static pressure, Dayton Inc.) that draw air from the atmosphere. The flow velocity
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Letter in
Mesh size Wire diameter % Open area figure 1 Distance from C Quantity

30 × 30 0.0340 cm 37.1 % A 100 cm 1
30 × 30 0.0216 cm 55.4 % B 10, 30 and 60 cm 3
22 × 22 0.0330 cm 49.8 % C 0 cm 1

Table 1. The flow straightener and meshes in the inlet section of the facility.
(Note: for location of each of the screens, see figure 1.)

is controlled by adjusting the opening of dampers connected to the suction port
of the blowers. A maximum flow velocity in the test section of 2 m s−1 is available,
having been determined to be sufficient to give a parabolic flow (i.e. mixing half-width
grows as t2) downstream from the splitter plate for the maximum available At ∼ 0.75
(Snider 1994). In addition, a series of high-pressure regulators (Tescom Inc.) and an
orifice plate meter helium at a constant mass flow rate into the lower section of
the inlet plenum (Banerjee & Andrews 2006). Helium and air streams are uniformly
mixed before they reach the inlet section by passing the streams around a series of
wooden ribs placed inside the ductwork. A stainless steel splitter plate extends from
the channel entrance to the start of the test section and separates the two streams of
gas. The splitter plate is 0.32 cm thick, 1.0 m long and has a 1.8◦ knife edge at the
end.

The top and bottom inlet sections of the channel are fitted with screens and
flow straighteners to produce a uniform flow, assist in dissipating free-stream
turbulence and minimize boundary-layer development on the splitter plate and walls
(Brown & Roshko 1974; Browand & Weidman 1976; Stillinger et al. 1983; Snider &
Andrews 1994; Banerjee & Andrews 2006). In particular, a 10 cm long polycarbonate
honeycomb (0.635 cm in diameter) is placed at the entrance of each channel. The
flow straightener is followed by four sets of screens; one 30 × 30 mesh (wires per
inch) with a wire diameter of 0.034 cm (37.1 % free area), followed by three 30 × 30
meshes (wires per inch) with a 0.0216 cm wire diameter (55.4 % free area). A full
channel screen placed at the end of the splitter plate was found to be effective in
minimizing the wake from the splitter plate (Koop 1976). This end screen consists of
a 22 × 22 mesh (wires per inch) with a 0.033 cm wire diameter, and has an open area
of 49.8 % (see table 1). The honeycomb and meshes are placed sufficiently upstream
to dissipate free-stream turbulence (Tan-Atichat, Nagib & Loehrke 1982), and the
open area chosen was consistent with turbulence management recommendations
for wind tunnels (Loehrke & Nagib 1972). The turbulence level in the free stream
was experimentally measured 5 cm from the end mesh using a hot-wire (three-wire)
anemometer and u′

rms/U , v′
rms/U and w′

rms/U were found to be < 2 %. Measurements
reported by Ramaprabhu & Andrews (2004), using a water channel facility (similar
in design and and flow conditions) measured negligible skewness for the axial velocity
r.m.s. fluctuations, indicating a ‘frozen’ condition in the axial direction and thus
justifying the Taylor hypothesis (Taylor 1938). Indeed, another criterion (Pope 2000)
for the Taylor hypothesis is that u′/U � 1, i.e. the axial velocity fluctuation is much
less than the advective velocity. A small spread angle was designed in the experiment
to ensure that the flow was parabolic, so that w′/U � 1 (Snider & Andrews 1994).
Ramaprabhu & Andrews (2004) reported that u′/w′ ≈ 0.5 and, thus, the u′/U
criterion was also satisfied in the present experiment.
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the experiment is 0.259.

Preliminary experiments at At � 0.1 revealed the presence of gravity currents that
induced a backflow from the exit plenum towards the splitter plate (see figure 2). Such
back-flowing gravity currents were not observed in the small At ( = 0.04) experiments
of Banerjee & Andrews (2006), but at At � 0.1, they were found to cause the centreline
of the RT mixing layer to rise and interfere with the mixing process. The exit plenum
was redesigned to eliminate these gravity currents by introducing an exit splitter plate
that supported the heavy fluid and stopped it from falling to the bottom of the exit
plenum. In addition, a flap was placed on the top half of the exit plenum and the
opening was adjusted to keep the centreline horizontal for experiments up to Atwood
numbers of 0.6. This design modification of the exit plenum solved a difficult problem
for At > 0.1 experiments, and set the stage for high At experiments in the facility.

We briefly describe the operation of the facility, more details may be found in
Banerjee & Andrews (2006). The Atwood number of the RT mix may be conveniently
written as (Banerjee & Andrews 2006):

At =
(ρ1 − ρ2)

(ρ1 + ρ2)
=

[
ρair

ρHe

− 1

]
ṁHe

UmA

2ρair −
[
ρair

ρHe

− 1

]
ṁHe

UmA

, (2.1)

where ṁHe is the mass flow rate of helium, Um is the mean flow velocity of the two
streams (Utop =Ubottom =Um) and A is the cross-sectional area of each stream. The
temperature of each stream was measured and the densities of air and helium were
obtained from equations of state (McCarty 1973; Jacobsen et al. 1990). The helium
flow metering unit was designed based on a volumetric method (at constant outlet
pressure), in which helium was delivered from a compressed supply having passed
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Figure 3. (a) View of the mixing process in the channel at At = 0.47; (b) development of
the two fluid interface in the absence of shear and density gradients, i.e. at At ∼ 0. The mean
velocity for both the experiments is Um = 1.65 m s−1.

though an orifice (John 1984; Jitschin, Weber & Hartmann 1995). More details
about the working principles of the flow metering unit and information on mass flow
rate calibration at different Atwood numbers (using different orifices) can be found
elsewhere (Banerjee 2006).

To illustrate the spatial and temporal RT mixing layer development within the gas
channel an image of the RT mixing layer at an At = 0.47 (Um = 1.65 m s−1) is shown
in figure 3(a). The inlet is on the right, and the outlet is on the left. Dark green smoke
was added to the top (denser) stream for visualization purposes. At a location 1.75 m
downstream from the splitter plate, the width of the RT mixing layer is ∼68 cm.
To demonstrate that the RT mixing layer is primarily due to buoyancy, and not
due to the wake of the splitter plate, the gas channel was run at At ∼ 0 with air on
top and bottom (the neutral buoyancy case). Figure 3(b) shows a photograph of the
interface between the two air streams that both flow at velocities of Um = 1.65 m s−1.
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At = 0.04 At = 0.26 At = 0.47 At = 0.6

x (cm) τ τα τ τα τ τα τ τα

50 0.567 0.644 0.603 0.726 0.589 0.695 0.549 0.603
75 0.851 1.448 0.904 1.634 0.884 1.563 0.824 1.358

100 1.135 2.575 1.205 2.906 1.179 2.778 1.099 2.414
125 1.418 4.023 1.507 4.54 1.473 4.341 1.373 3.772
150 1.702 5.793 1.808 6.538 1.767 6.251 1.648 5.431
175 1.986 7.885 2.109 8.898 2.063 8.508 1.923 7.393
195 2.213 9.791 2.350 11.049 2.298 10.564 2.142 9.179

Table 2. Non-dimensional time scales: τ = (x/Um)(Atg/H )1/2 used in present experiments
and corresponding ‘α’-group (Dimonte et al. 2004): τα = Atgt2/(H/2) values.

The thickness of the mixing layer formed by the wake for this no buoyancy case is
< 6 cm (at a location 1.75 m downstream from the splitter plate), with no apparent
flow structures that would result in significant mixing. Thus, the primary driving
mechanism for the RT mixing layer is buoyancy, and mixing due to the wake of the
splitter plate is considered to be negligible in the far field.

Inspection of the photograph in figure 3(a) for At = 0.47 reveals small interfacial
perturbations on the right-hand side (upstream, inlet) of the photograph, which
grow, interact and merge to form the RT mixing layer seen on the left-hand side
(downstream, exit). The distance downstream, x, is converted to time, t = x/Um, using
the Taylor hypothesis (Taylor 1938; Pope 2000), where Um is the mean convective
velocity of the channel flow (in this experiment the top and bottom streams flow
at the same speed so there is no superimposed shear). A non-dimensional time τ is
employed that uses the characteristic buoyancy time scale (Snider & Andrews 1994;
Dalziel et al. 1999; Ramaprabhu & Andrews 2004; Mueschke, Andrews & Schilling
2006) as

τ ≡ t

(
Atg

H

)1/2

=
x

Um

(
Atg

H

)1/2

, (2.2)

where g is the acceleration due to gravity and H is the depth of the channel. An
alternate non-dimensional time τα(≡ Atgt2/(H/2)) has been used in RT simulations
(Dimonte et al. 2004), and the two non-dimensional times are related as τ = (τα/2)1/2.
Values of τ and τα for our measurement positions are listed in table 2 to facilitate
comparison between the two non-dimensional time scales.

3. Theory
3.1. Reynolds number definitions for Rayleigh–Taylor mixing

In our buoyancy-driven mix with no shear, the mean convective velocity does not
contribute to the dynamics of the mix, and so the definition of Reynolds number often
becomes a matter of personal preference that depends on the choice of a suitable
velocity scale. For low Atwood numbers (At < 0.1), when the RT mixing layer is
symmetric (hs = hb =h), Snider & Andrews (1994) formulated a Reynolds number
based on a balance of kinetic and potential energy that is given as

Re1 =
2h

νmix

√
1

3
gAth. (3.1)
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Cook & Dimotakis (2001) defined a Reynolds number by using the whole RT mix-
width (ht =hb+hs) as the length scale and its time derivative (ḣt ) as the corresponding
characteristic velocity scale:

Re2 =
ht ḣt

νmix

. (3.2)

Daly (1967) suggested that ḣ ∝
√

Atgh; i.e. the mix-width growth rate is proportional
to the terminal velocity of an RT instability of wavelength h. Thus, it is apparent that
(3.2) is similar in form to the definition of Snider & Andrews (1994).

However, at high Atwood numbers (At > 0.1), the RT mixing layer is asymmetric
and a Reynolds number based on the total RT mix-width will not capture the
asymmetries in the bubble and spike penetrations. To incorporate different levels of
turbulence in each half of the mix (the bubble and spike sides), (3.2) may be modified
to incorporate separate Reynolds numbers based on bubbles and spike velocities as

Reb =
hbḣb

νmix

; Res =
hsḣs

νmix

. (3.3)

Goncharov (2002) formulated an analytical model of the nonlinear bubble evolution
for a single-mode classical RT instability for arbitrary Atwood numbers. The model
provides a continuous bubble evolution from the early time exponential growth to
the late-time nonlinear regime. The bubble saturated to ḣb =

√
2At/(1 + At )(g/k),

where k is the perturbation wavenumber. A similar expression for the spikes gives
ḣs =

√
2At/(1 − At )(g/3k). Substituting these expressions for bubble and spike velocity

in (3.3), we can modify the definition of Reynolds number for the bubble and
spikes as

Reb =
hb

νmix

√
2At

1 + At

g

k
; Res =

hs

νmix

√
2At

1 − At

g

3k
. (3.4)

Res shows a strong dependence on the Atwood number of the flow, which is
also observed in our experiment as the measured value of αs increases with an
increase in the Atwood number. The bubble Reynolds number (Reb) exhibits a weak
dependence on the Atwood number and as a result αb is approximately constant
for the range of Atwood numbers reported here. Goncharov’s (Goncharov 2002)
theoretical predictions are based on a single-mode model and illustrate the associated
asymmetry in the bubble and spike penetrations and the different levels of turbulence
(and Reynolds number) in each half of the mix. The growth rates for our multi (many)
mode experiments illustrate similar asymmetry in bubbles and spikes amplitudes and
are calculated from conditioned hot-wire measurements of spike and bubble velocities.
The mean kinematic viscosity νmix is calculated according to νmix = (µl + µh)/(ρl + ρh)
(Youngs 1984). An alternate mixture viscosity was given by Wilke (1950):

µmix = µ1

[
1 +

m2

m1

Φ12

]−1

+ µ2

[
1 +

m1

m2

Φ21

]−1

(l → 1, h → 2),

where Φij =

[
1 +

(
µi

µj

)1/2 (
Mj

Mi

)1/4
]2 [

8

(
1 +

Mi

Mj

)]−1/2

, i �= j,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.5)

with the molecular weights of the pure gases as M1 and M2, and the mole fraction
of the individual components in the mixture as m1 and m2. The difference in νmix

calculated based on the two methods is less than 1 % at small Atwood numbers (< 0.1).
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For the present air–helium combination, when At > 0.5, the difference increases to
∼5.35 %.

3.2. Definition of molecular mix parameter

The measure of molecular mixing, θ , used here was first introduced by Danckwerts
(1952) as a degree of fluid segregation and defined as (Youngs 1994; Wilson &
Andrews 2002)

θ = 1 − B0

B2

. (3.6)

This parameter has been reported by various researchers (Dalziel et al. 1999; Cook &
Dimotakis 2001; Cook, Cabot & Miller 2004; Ramaprabhu & Andrews 2004;
Ristorcelli & Clark 2004; Cook & Cabot 2006; Mueschke et al. 2006, 2009) and
provides a practical measure of molecular mixing as transport equations for ρ ′2 and
ρ̄ can be derived, modelled and solved to predict mixing (Chassaing et al. 2002; Fox
2003). The density fluctuation self-correlation, B0, includes the effect of mixing due
to molecular diffusion and is defined as

B0 = lim
T →∞

1

T

∫ T

0

(
ρ − ρ̄

�ρ

)2

dt = ρ ′2/�ρ2, (3.7)

where ρ ′2 is the density variance and �ρ = ρ1 − ρ2. B2 is defined as the corresponding
conditioned measure that would result if the two fluids were immiscible with no
molecular mixing:

B2 = f1f2 = f1(1 − f1),

f2 = lim
T →∞

1

T

∫ T

0

(
ρ − ρ2

�ρ

)
dt,

⎫⎪⎬
⎪⎭ (3.8)

where f1 is the fraction by volume of the heavy fluid, and f2 is that of the light fluid
with f2 = 1 − f1. Then θ = 0 implies no molecular mixing, and θ = 1 corresponds to
completely molecularly mixed fluids (i.e. the density is uniform). At small Atwood
numbers, the location of the initial interface corresponds to the centreline of the RT
mixing layer. In the present RT mixing layer, B0 has been found (Wilson & Andrews
2002) to couple with the mean pressure gradient as a primary source for the next
mass flux due to turbulence, thus the destruction of B0 by molecular diffusion might
be expected to reduce the rate of growth of the RT mixing layer as smaller diffused
scales of mixed fluid merge to form larger diffused scales that move towards the edge
of the RT mixing layer (Steinkamp, Clark & Harlow 1995).

3.3. Intermittency and conditional statistics in Rayleigh–Taylor mixing

Since the RT mixing layer is dominated by ‘rising’ bubbles and ‘falling’ spikes, it is
logical to define conditional statistics based on bubble and spike dynamics instead
of the traditional turbulent non-turbulent separation which is done for shear layers.
This approach is particularly useful at large Atwood numbers where asymmetries
between the spikes and the bubbles were observed. Although conditional averaging
techniques have been used extensively for shear-driven turbulent flows (Antonia
1981), the authors believe that the conditional measurements reported here are the
first of their kind for RT experiments and allow investigation of interesting aspects in
the buoyancy-driven mixing layer which is observed through conventional averaging
techniques. We briefly review various conditional averaging measurements before
discussing the bubble and spike dynamics of our RT mixing layer using conditioned
measurements.
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Early attempts to use conditional measurements for studying the dynamics of
a shear layer were done by Wygnanski & Fiedler (1970), who used hot-wire
diagnostics to conditionally average turbulent and non-turbulent flows using the
signal: |∂2u′/∂t2| + (∂u′/∂t)2. However, these measurements were limited in their
scope as they were performed using analogue data acquisition devices (Bruun 1995).
With the advent of digital data acquisition technologies, it became more common to
use a scalar as a fluid marker to conditionally sample the flow measurements as well
as others parameter of interest. Conditional statistics reported by Fabris (1983a, b)
used a temperature marker in a wake flow to distinguish between turbulent and
potential fluid in the wake. LaRue & Libby (1980) used a scalar marker to obtain
conditional statistics, using helium concentration to condition measurements of an
air turbulent boundary layer entraining laminar flowing helium. Measurements were
conditionally averaged according to specific ranges of helium concentration to identify
the contributions of each fluid to the originally air only turbulent boundary layer. The
hot-wire interference probe used by LaRue & Libby (1980) was limited to conditional
measurements of concentration, and only the streamwise velocity fluctuations (u′).
Conditional statistics are generally obtained using the indicator function or the
intermittency function, I (t) as

I (t) = Hs[ω(t) − ωthreshold ], (3.9)

where Hs is the Heaviside function, ω is vorticity and ωthreshold is a threshold chosen to
identify turbulent fluid (Pope 2000) such that I (t) = 1 in turbulent flow, and I (t) = 0
if the flow is non-turbulent. The intermittency function of (3.9) can be modified to
decompose the signal according to positive and negative values of any parameter,
φ, as

I (t) =
1 + sgn[φ(t)]

2
. (3.10)

4. Measurement diagnostics
4.1. Visualization diagnostics

The gas channel test section was backlit using a series of 35 fluorescent lamps, similar
to those used by Snider & Andrews (1994). Frosted acetate paper served as the white
background, and prismatic sheets were used between the lamps and acetate paper
that diffused the light and made the background near uniform. Dark green smoke
(RC105G, Regin HVAC) was added to one of the streams to visualize the RT mixing
layer. For low-Atwood experiments (At ∼ 0.04, 0.1 and 0.25), the smoke was added to
the lighter stream (air–helium mixture). However, small amounts of air in the bottom
stream (∼22.63 % of air by volume) for the high-Atwood experiment (At > 0.25)
prevented proper combustion of the smoke cartridges. Consequently, for the Atwood
numbers 0.47 and 0.6 imaging experiments, smoke was added to the heavier fluid
(pure air on top). The density of smoke (soot particles) emitted by the smoke
cartridges is ∼888 mg m−3. For the Atwood number range of 0.04–0.6, the change in
Atwood number due to addition of smoke varied between 0.03 %–0.25 % respectively,
so the variation in Atwood number with addition of smoke was considered to be
negligible.

Each experiment was photographed using a digital camera (Canon PowerShot
A80) with a manually fixed focus. At the start of all experiments for At < 0.6, the
camera shutter speed, aperture and ISO settings were fixed at 1/100 s, f/8.0 and 100;
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however, for At = 0.6 the settings were 1/160 s, f/7.1 and 50. After an experiment,
recorded images were cropped at the same location using a marker near the exit
plenum so that the RT mixing layer spanned the entire width of the image, and
then thereafter the photographs were processed with MATLAB c©. The relationship
between concentration and pixel intensity was determined by a calibration wedge
(Andrews 1986; Snider & Andrews 1994; Banerjee & Andrews 2006), and the smoke
intensity was found to be linear for a dynamic range over 100 pixel intensity values
(Banerjee & Andrews 2006). For greyscale values less than 80 (lower means darker),
the camera response became nonlinear so care was taken to ensure that the calibrated
linear dynamic range from 100 to 200 was used during an experiment.

Notwithstanding the care described above, photographic images were found to
be non-uniformly backlit. A gradual darkening at the edges was attributed to non-
uniform light intensity of the fluorescent tubes, which were bright at the centre
and darker towards the edges. To eliminate the effect of non-uniform background
illumination, we use the Beers law method of Snider (1994). The corrected intensity,
Icorr , is the intensity that would exist if the backlighting is uniform at I

uniform
0 and

obtained from the measured intensity, Im, and the measured background intensity,
I0 as

Icorr =
I

uniform
0

I0

Im. (4.1)

4.2. Hot-wire diagnostics

We present an overview of the two different hot-wire techniques used in this work,
namely an MPMO technique and an S3WCA technique, the purpose is to give
insight into the methods and their relation to the flow physics; a detailed description
about the related techniques and the calibration methods may be found elsewhere
(Banerjee & Andrews 2007; Kraft et al. 2009).

4.2.1. Multi-position multi-overheat technique

The MPMO technique uses single normal (SN) hot-wire probes operated
sequentially at different overheat ratios, and was adapted from similar techniques
by Corrsin (1949) for low-velocity flows, and by Kovasznay (1950) and Rose (1973)
for supersonic flows. The method has been modified in our variable density RT mixing
layer to measure simultaneous density and velocity. Previous hot-wire measurements
by Banerjee & Andrews (2006) at low At ∼ 0.035 neglected the effect of helium on the
hot-wire measurements, and used an MPSW technique (Bruun 1972) to decompose
all three-dimensional velocity fluctuations. By not incorporating the effect of helium
the MPSW technique was restricted to low-Atwood flows, i.e. At < 0.04. The current
MPMO technique accounts for the effect of helium by employing a careful calibration
in a binary air–helium mixture. Measurements were made using a hot-wire probe
with a diameter of 5 µm (single wire: 55P16) coupled to a constant temperature
anemometer (CTA) unit (Mini-CTA, Dantec Dynamics). The measurements were
made at two overheat ratios of 1.6 and 1.9 that correspond to a �T ( = Twire − Tamb)
of 171.43◦C and 257.14◦C respectively. Details about the wire and anemometer
properties at these overheat ratios can be found in table 3(a). Since the mean flow in
our facility was one-dimensional (Um, 0, 0), with (x, y, z) as the axial (flow direction),
vertical (y) and cross-stream (z) directions (see figure 4), with corresponding three-
dimensional velocity fluctuations (u′, v′, w′). Table 3(b) gives the hot-wire angles used
for the measurements, and the response function for a SN hot-wire probe, for small
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Probe specific parameters
Sensor resistance, R20(Ω) 3.38
Sensor lead resist., RL(Ω) 0.9
Support resistance, Rs(Ω) 0.44
Cable resistance, Rc(Ω) 0.2
Sensor TCR, α20(/K) 0.0036

Wire operating parameters

Overheat ratio ( = Rw/Ramb) 1.9 1.6
�T = Tw − Tamb(

◦C) 257.14 171.43
Operating resistance, Rw(Ω) 6.51 5.47
Total resistance, RT (Ω) 7.99 6.98
Decade resistance, RD(Ω) 159.83 139.55
Bridge ratio, M 1 : 20

Table 3a. Wire properties at overheat ratios 1.9 and 1.6.

Position Φ δ

1 90◦ 0◦

2 60◦ 0◦

3 30◦ 0◦

Table 3b. Measurement orientations for the MPMO measurement technique. The
measurement uncertainty of the positions is ±2.5◦.

y, v′

z, w′

z

x, U, u′

x z

y

Flow

δ : Roll angle

Φ : Pitch angle

Hot wire

Hot wire

Figure 4. (Colour online) Wire orientations for the MPMO technique.

fluctuations in velocity and density, can be written as

e′

E
= �eu

u′

Um
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+ �ew

w′

Um

+ �eρ

ρ ′

ρ
, (4.2)
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where �eu, �ev and �ew are the velocity sensitivities, and �eρ is the density sensitivity
of an SN wire probe. Wire sensitivities are evaluated based on calibration of each
wire, and defined as follows:

�eu =
∂ lnE

∂ lnU

∣∣∣∣
θ,�Tw,ρ

=
Um

E

dE

dU

∣∣∣∣
θ,�Tw,ρ

,
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u,�Tw,ρ

=
1

E
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u,�Tw,ρ

,
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θ,�Tw,ρ
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=
ρ

E

dE

dρ
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.
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.3)

Squaring, and taking the time average of (4.2), gives ten independent terms on the
right-hand side. Thus, in principle ten independent measurements are needed to
evaluate all the variables. However, this was simplified by using known properties
of our RT mixing layer (Ramaprabhu & Andrews 2004; Ristorcelli & Clark 2004;
Banerjee & Andrews 2006). In particular, symmetry of the flow structures implies
homogeneity of the fluctuations and so the horizontal fluctuation velocities u′2 and
w′2 are taken equal based on earlier measurements done in our facility (Banerjee &
Andrews 2006) which are in agreement with similar measurements done in the water
channel facility (Ramaprabhu & Andrews 2004). Furthermore, symmetry also implies
ρ ′u′ to be equal to ρ ′w′. Again, symmetry means that the cross terms in the Reynolds
stress tensor are taken to be the same and negligible, i.e. v′w′ ∼ u′w′ ∼ 0. These
symmetries are true for all Atwood numbers as well as for the compressible RT case.
Thus, upon simplification we obtain(

e′

E

)2

=

(
2�e2

u

U 2
m

)
u′u′ +

(
�e2

v

U 2
m

)
v′v′ +

(
�e2

ρ

ρ2

)
ρ ′ρ ′

+

(
2�ev�eρ

ρUm

)
ρ ′v′ +

(
4�eu�eρ

ρUm

)
ρ ′u′ +

(
2�eu�ev

U 2
m

)
u′v′. (4.4)

Equation (4.4) has six independent terms and thus six independent measurements
are needed to obtain u′u′, v′v′, ρ ′ρ ′, ρ ′v′, ρ ′u′ and u′v′. By using a multi-position (see
figure 4 and table 3a) and multi-overheats we obtained the necessary six independent
traces (three positions and two overheats). Care was taken to ensure that the choice
of overheat ratio of the wire and the orientations were independent. The hot wires
were calibrated in a separate jet-flow calibration rig to evaluate the wire sensitivities
defined in (4.3) prior to the actual experiments. Once the wires were transferred
into the channel, it was placed in the air (top) stream and the voltage (signal) was
matched with the calibration voltage. No drift was observed in transferring the wires
between the calibration facility and the actual experiment. Figure 5(a,b) shows plots
of wire sensitivities dE/dU and dE/dρ at an overheat ratio of 1.6. More details about
the calibration methods, techniques to evaluate wire sensitivities, and further details
of the MPMO technique are given in Kraft et al. (2009) and Banerjee & Andrews
(2007).

Limitations of MPMO. The present MPMO method is a ‘time-averaged’ technique
and was intended to be robust enough to measure various statistics for a wide range of
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Figure 5. Wire sensitivities: dE/dU (a) and dE/dρ (b) at an overheat ratio
of 1.6 from the hot-wire calibration.

Atwood numbers for the flow. However, several limitations with the MPMO technique
are described next for At > 0.25. In particular, the technique takes a constant value of
dE/dρ for the entire experiment. In practice, this is accurate if the response of E versus
ρ is linear, which is the case for a small density difference (up to At < 0.25) as can
be seen in figure 5(b). However, for large density differences (At > 0.25), the response
becomes significantly nonlinear as can be seen in figure 5(b). Thus, using a linear
assumption (for calculating derivatives/sensitivities) would result in unacceptable
errors in the measured quantities. So the MPMO method, though robust, is limited to
low-Atwood measurements (At � 0.25), and also by virtue of being a ‘time-averaged’
method is not able to measure the fluctuation power spectrum.

4.2.2. Simultaneous three-wire/cold-wire anemometry

Simultaneous measurements using hot-wire (constant temperature) anemometer and
cold-wire thermometer (constant current anemometers) have been used previously
by Vukoslavcevic, Radulovic & Wallace (2005), Fabris (1983a) and Hishida &
Nagano (1978), however, in these instances the additional complexity of varying
fluid concentration/density was not present. Using temperature as a fluid marker
for the density inside our gas RT mixing layer provides an opportunity to collect
instantaneous and simultaneous measurement of velocity and density fluctuations.
A three-wire probe, maintained at a �T (= Twire − Tamb) of 200◦C is coupled with
three-CTA circuits to obtain three-dimensional velocity fluctuations. To identify the
gas concentration passing the probe, a temperature difference (∼5◦C) between the
two inlet streams is used as a marker for fluid concentration. This is valid as
the Lewis number (ratio of mass diffusion to thermal diffusion) ∼1, which implies that
as the two streams molecularly mix within the RT mixing layer, the temperature
marker will transport and diffuse in the same manner as the gas it has marked.

For accurate measurement of the fluid concentration/density in the RT mixing layer,
a temperature difference (�T ) between the two inlet streams in the experiment must be
selected. However, there are limitations with selecting an arbitrarily large temperature
difference, as increasing the �T between the two inlet streams is detrimental to
the hot-wire diagnostic, and also fluid densities can be significantly altered by a
large �T . Table 4 illustrates the uncertainty that can be created by using a large
temperature difference through its influence in the Atwood number for the RT mixing



142 A. Banerjee, W. N. Kraft and M. J. Andrews

At �T (◦C) % change of At

0.01 5 45
0.10 6
0.50 3
0.75 1

Table 4. Effect of �T on the Atwood number.

layer. The Atwood numbers are determined using the temperature of the top and
bottom (pure) streams. However, as the two fluids mix, both mass and temperature
subsequently diffuse and the temperature of the resulting mix is different from their
pure fluid temperatures. The local Atwood number calculated based on the pure fluid
components of the mixture and that calculated based on the diffused temperature
may be different if a large temperature difference is selected. For a small temperature
increment of 5◦C, it was found that the measurement uncertainty would be ∼6 % for
At = 0.1. Thus, when using small Atwood numbers (i.e. small concentrations of helium
in air, and therefore small density differences) the role of the applied temperature
difference between the inlet streams should be considered. For the current experiments
at At = 0.03, the temperature difference between the two inlet streams was maintained
at ∼2◦C, which resulted in ∼9 % uncertainty in the Atwood number.

A cold-wire probe (5 µm diameter) coupled to a constant current anemometer
circuit is used simultaneously to measure temperature fluctuations, and thereby
identify concentration fluctuations of the mixture flowing over the probe. The cold
wire has a lower frequency response of 1 kHz compared to hot wires, which
have a frequency response of ∼100 kHz. When used together for instantaneous
density–velocity measurements the frequency response of the combined probe is
limited by the frequency response of the cold-wire thermometer. The cold-wire and
three-wire probes are placed side by side with a total probe resolution of ∼6 mm.
Information about fluid concentrations passing the cold-wire probe is compared
with three-wire probe output voltages, and a calibration is performed at different
concentrations, resulting in accurate measurements of the velocity fluctuations. The
fluid concentration information obtained from the cold-wire probe is then converted to
density fluctuations, thereby providing simultaneous and instantaneous measurements
of temperature, density and velocity inside the RT mixing layer. For illustrative
purposes, the order of steps in the conversion procedure and the interactions between
hot-wire anemometers and cold-wire thermometers during various steps of the analysis
are shown in figure 6. More details about the technique and calibration can be found
in Kraft et al. (2009).

Limitations of S3WCA. Hot-wire anemometry is restricted to low- and moderate-
turbulence intensity flows, typically less than 25 %, and thus care must be taken when
using multiple hot wires in highly turbulent flows (Bruun 1995). This limitation is
attributed to the insensitivity of hot wires to flow direction, ambiguity of the voltage
signal when the velocity vector lies outside the approach cone, large probe volumes
and the limited pitch/yaw response of the probes (Andreopoulos 1983; Frota &
Moffat 1983; Bruun 1995). These issues may be avoided by limiting the instantaneous
velocity vectors to approach angles (with the probe axis) of �20◦ (Andreopoulos
1983; Frota & Moffat 1983). An application of this 20◦ limit approximates the
instantaneous velocity vector in two dimensions using 2v′

rms , as the vertical velocity
component for the instantaneous velocity vector and the mean advective velocity,
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Three hot-wire voltage
traces (E1, E2, E3)

One cold-wire voltage
trace (Ecw)

Use calibration to
convert Ecw to T

Convert the measured
T to fv, He

Convert  fv, He to ρ

Correct E1, E2, E3
for T fluctuations

Use hot-wire calibration
to convert the corrected
voltage to Ueff  for each

hot-wire sensor

Decompose Ueff  for each hot-
wire sensor into global

velocity components (U, V, W)

Simultaneous traces
of U, V, W and ρ

Figure 6. Flowchart for the determination of velocity and density inside the helium–air mixing
layer simultaneously using a three wire hot-wire anemometer and a cold-wire thermometer.

Um, as the horizontal component of the instantaneous vector. Twice the v′
rms is used

so that the vector satisfies all vertical velocity fluctuations within a 95 % confidence
interval. This approximation results in a turbulent intensity limit of 20 % for the
dominant vertical velocities in our RT mixing layer, and a useful guide for design of
future experiments. In addition, the spatial resolution of the cold-wire and three-wire
hot-wire probes limits the frequency response of the combined system. Using a spatial
resolution of 6 mm (probe diameter) and the advective velocity for the flow, the
Nyquist limit implies a frequency response of approximately 50 Hz for the At = 0.03
experiments. However, as the flow channel velocity for the experiment is increased to
reach higher At , the frequency response improves to ∼100 Hz at At = 0.6.

5. Results
We report flow visualization measurements of density profiles across the RT mixing

layer at Atwood numbers of 0.04, 0.26, 0.47 and 0.6 that are statistically convergent.
Hot-wire data were also taken at various downstream locations from the splitter
plate for an Atwood number experiment of 0.04 and 0.6. Details about the various
experiments can be found in table 5(a). The data presented cover RT mixing from
τ = 0.56–2.21, or corresponding ‘α’-group (Dimonte et al. 2004) non-dimensional times
τα = 0.644–9.791 (our range of non-dimensional times corresponds to a flow Reynolds
number (Re1) range of 150–25 000, which is calculated based on the definition given
in (3.1)). Various velocity, density and density–velocity statistics were measured using
hot-wire diagnostics and the results are presented below, with an error analysis.
Representative values of basic velocity statistics along the centreline are provided in
tables 5(b) and 5(c) for At = 0.03 and 0.6 measurements respectively.
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Diagnostic x-location (cm) y-location (cm) Atwood number

Imaging 5–185 −50 to 50 0.04, 0.097, 0.26 and 0.47
5–130 −50 to 50 0.6

MPMO 50, 75, 100, 150 and 195 0 0.04 (�T ∼ 2◦C)
175 −36 to 36 cm

(in 9 cm steps)
S3WCA 100, 125, 150 and 175 0 0.03 (�T ∼ 2◦C)

40, 60 and 70 0 0.6 (�T ∼ 5◦C)

Table 5a. Summary of imaging and hot-wire experiments reported. (Note: a y-location of 0
corresponds to the centreline of the RT mixing layer).

At 0.03

x (m) 1.0 1.25 1.5 1.75
τ 0.76 0.95 1.14 1.33

Um (m s−1) 0.65

u′
rms (m s−1) 0.057 0.059 0.064 0.070

v′
rms (m s−1) 0.073 0.078 0.089 0.102

w′
rms (m s−1) 0.041 0.048 0.055 0.059

ρ ′
rms (kg m−3) 0.023 0.022 0.021 0.020

ρ ′u′ (kg m−2 s−1) −0.0002 −0.0004 −0.0002 −0.0002

ρ ′v′ (kg m−2 s−1) −0.0013 −0.0014 −0.0014 −0.0016

ρ ′w′ (kg m−2 s−1) 0.0004 0.0003 0.0003 0.0002

θ 0.62 0.66 0.68 0.7

Ru′v′ 0.312 0.133 0.220 0.216

Rv′w′ −0.277 −0.288 −0.167 −0.09

Ru′w′ 0.203 −0.008 0.28 0.252

Rρ′u′ −0.12 −0.03 −0.12 −0.14

Rρ′v′ −0.76 −0.81 −0.74 −0.75

Rρ′w′ 0.38 0.31 0.30 0.21

Su −0.02 0.01 −0.08 0.05

Sv 0.27 0.02 −0.21 0.05

Sw −0.24 −0.20 0.09 0.14

Ku 2.98 3.02 3.34 2.92

Kv 2.27 2.16 2.34 2.17

Kw 2.82 2.96 3.20 2.97

Table 5b. Velocity and density statistics at At = 0.03 based on the S3WCA
hot-wire measurements.

5.1. Flow visualization measurements

Figure 7(a) shows a photograph of the formation and evolution of the buoyancy-
driven mixing layer for an At = 0.04 experiment with green smoke introduced in
the lighter air–helium stream. The minimum intensity corresponds to an air–helium
mixture fraction of zero, and the maximum intensity corresponds to pure air with a
mixture fraction of 1 (a negative of the images are taken so that the photographs for all
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At 0.6

x (m) 0.4 0.6 0.7
τ 0.44 0.66 0.78

Um (m s−1) 2.0

v′
rms (m s−1) 0.36 0.39 0.44

w′
rms (m s−1) 0.25 0.26 0.31

ρ ′
rms (kg m−3) 0.27 0.25 0.24

ρ ′v′ (kg m−2 s−1) −0.054 −0.071 −0.06

ρ ′w′ (kg m−2 s−1) −0.003 0.01 −0.015

θ 0.54 0.46 0.6

Rv′w′ −0.251 −0.138 0.073

Rρ′v′ −0.58 −0.68 −0.54

Rρ′w′ −0.04 0.13 −0.18

Sv −0.49 0.09 0.03

Sw −0.26 −0.98 −0.43

Kv 3.15 3.14 3.27

Kw 4.40 4.39 4.62

Table 5c. Velocity and density statistics at At =0.6 based on the S3WCA
hot-wire measurements.

the experiments are consistent, i.e. black above and white below). To obtain a measured
fluid mixture fraction f1 ( = (ρ(x, y) − ρ2)/(ρ1 − ρ2)), peaks on the corresponding
image histogram were determined with their corresponding intensities i.e. low (Imin)
and high (Imax ). The fluid mixture fraction was then obtained (having previously
established a linear relationship of concentration to intensity using the calibration
wedge) (Snider & Andrews 1994) from

f1(x, y) =
I (x, y) − Imin

Imax − Imin

. (5.1)

A close inspection of the photographs reveals that large coherent structures in the
light (air–helium) and dark (air–smoke) regions co-exist with finer scales of turbulent
mixing. The buoyant mixing layer grows downstream as a front of rising and falling
plumes (bubbles and spikes). During the experiment multiple plumes form spanwise
and along the channel, and, as suggested in the photographs, plumes at the left of the
photograph are formed by pairing with earlier plumes that came from the right. Such
bubble competition (Emmons et al. 1960) is observed throughout the length of this
RT mixing layer. Comparing photographs for an At = 0.6 experiment (figure 7b) with
an At = 0.04 experiment (figure 7a), it is observed that well-defined distinct plumes
(large scales) develop for At = 0.04 throughout the development of the RT-driven
mixing layer. However, at At =0.6, finer structures are observed in the mixing layer
with a corresponding reduction of observed large-scale structures. Since both images
have similar integral scales, the observations imply a larger range of length scales
develop in the At =0.6 experiment as the Reynolds number of the RT mixing layer
increases from a value of 7500 for the At =0.04 experiment to a value of 25 000 for the
At = 0.6 case (τ =1.986 and 2.142 for the At = 0.04 and 0.6 experiments respectively).
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Figure 7. Photograph of the mixing layer at (a) At = 0.04 (Um = 0.5 m s−1), (with
interrogation window for statistical analysis) and (b) at At = 0.6 (Um = 2.0 m s−1).

Figure 8 shows the measured average fluid mixture fraction variation across the
RT mixing layer at axial locations of 0.75 m and 1.75 m (or equivalently, τ = 0.851
and 1.986, and corresponding Reynolds numbers of 900 and 7500), taken from an
At = 0.04 experiment. As observed in earlier experiments (Kucherenko et al. 1997;
Snider & Andrews 1994; Dimonte & Schneider 2000; Ramaprabhu & Andrews 2004)
and in numerical simulations (Youngs 1994; Cook & Dimotakis 2001), the measured
mixture fraction profiles were found to vary linearly across the RT mixing layer, with
slight rounding at the edges attributed to the shape of the plumes at the RT mix edge.
Since Imin and Imax are based on the peaks of a corrected histogram, the mix fraction
f1 in figure 8 is not bound between 0 and 1, and noise can be seen outside the RT
mixing region that corresponds to values above 1 and below 0 that were retained to
indicate the error associated with the measurements. Figure 9 shows measured mix
fraction profiles for At =0.26 experiment. The mean stream velocity was increased
to 1.2 m s−1 to maintain a parabolic flow (Snider 1994; Snider & Andrews 1994;
Banerjee & Andrews 2006), and thus the spatial growth of the RT mixing layer
appears similar to that observed during the 0.04 <At < 0.6 experiments. Inspection
of the mix fraction profiles at locations of 0.75 m and 1.75 m downstream from the
splitter plate shows them to be slightly asymmetric, with hb ∼ 32 cm and hs ∼ 40 cm
at a location 1.75 m from the splitter plate. Figure 10 plots the corresponding mixture
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Figure 8. Mixture fraction profiles from the experiment at At = 0.04 (Um = 0.5 m s−1).
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Figure 9. Mixture fraction profiles from the experiment at At = 0.26 (Um = 1.2 m s−1).

fraction profiles for an At = 0.47 (Um = 1.65 m s−1) experiment that quantitatively
reveal the asymmetry in the RT mixing layer with hb ∼ 30 cm and hs ∼ 45 cm at a
downstream location 1.75 m from the splitter plate. The photograph of the RT mixing
layer for an At = 0.6 experiment (Um = 2.0 m s−1) in figure 7(b) even more clearly
shows a strong penetration asymmetry between the spikes (falling dark plumes) and
the bubbles (rising light-coloured plumes); with the falling spikes being narrower (and
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Figure 11. Mixture fraction profiles from the experiment at At = 0.6 (Um = 2.0 m s−1).

penetrating faster) than the rising bubbles. Figure 11 plots the corresponding mixture
fraction profiles that quantitatively reveal the asymmetry in the RT mixing layer with
hb ∼ 22 cm and hs ∼ 33 cm at a downstream location 1.25 m from the splitter plate.
The mixture fraction profiles are smoother as total number of large independent
structures averaged during the run for the At = 0.6 case is significantly larger than
our previous runs. The mixture fraction profiles for At � 0.47 (figures 10 and 11)
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also demonstrate that the position of the centreline of the RT mixing layer, i.e. the
position that corresponds to a 50 % mix fraction, no longer corresponds to the initial
position of the density interface. It was found that for At = 0.6, the deviation of
the 50 % mix fraction from the original interface location was ∼3 % of the total
mixing layer width. Similar deviation is also observed in large At ( = 0.5 and 0.9)
simulations of Youngs (1989, 1991). For the profile shapes observed in experiment
and numerical simulations, volume conservation requires the centreline value to drop
as the asymmetry increases. Thus, the initial position of the density interface is not
an invariant of the flow, and suggests an alternative definition for hb and hs based
on the position of the 50 % mix fraction.

5.1.1. Statistical convergence of measurements

Before describing derived measurements from the data, we consider the statistical
convergence of our measurements. A statistical convergence test was performed by
finding errors in the measured value of the density variance. An interrogation window
was taken downstream at x = 1.75 m and close to the edge of the RT mixing layer,
as indicated in figure 7(a). Assuming that the errors in density measurements are
purely random, Ramaprabhu & Andrews (2003) showed that the standard deviation
of density (at the edge of the RT mixing layer) falls on a χ2 distribution. From a series
of samples, each of size N, we obtain the variance of density to be σ 2

1 , σ 2
2 , σ 2

3 , . . . ,

then σ 2
i falls on a χ2 distribution. If n( = N − 1) is the number of degrees of freedom

in each sample, then nσ 2
/
σ 2 =χ2

n , where χ2
n is the χ2 function based on n degrees

of freedom. For a given value of n, we may determine the ratio σ 2
/
σ 2 from the

χ2 distribution, and hence determine the error in determining the non-dimensional
density variance. Thus, for a sample size N and a 95 % confidence level, the χ2

distribution was evaluated in Banerjee & Andrews (2006) by giving an estimate of
the error in determining density variance as shown in figure 12, and convergence
was attained with ∼100–150 images in the present experiment. In the current study,
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images were captured at a rate of 80 images per minute and each image had ∼2
(distinct) large structures, so that ∼200 large structures (smaller structures being more
numerous and hence not of concern) were averaged during the measurements, thus
meeting the convergence requirements.

5.1.2. Measurements of growth parameters (αb, αs)

Next we review various techniques that have been used to obtain a measurement
for the growth parameters αs and αb of (1.1), and show how they are intimately
related.

In the far field (i.e. at late time), the ensemble averaged half mixing width h was
shown by Snider & Andrews (1994) to grow quadratically with time according to
(1.1), but did not go to zero at the start of the test section (end of splitter plate).
This implies a virtual origin (VO) at the start of the splitter plate that accounts
for boundary layer shedding from the splitter plate, and early time non-similarity
development of the RT mixing layer. Snider & Andrews (1994) measured the growth
parameter αb,V O with an absolute deviation algorithm to define a virtual origin, x0,
by describing the half mix-width as

hb = αb,V OAtg

[
x − x0

Um

]2

= αb,V OAtg[t − t0]
2. (5.2)

A straight line was fitted to the data and the slope of the straight line gave a value for
the growth parameter αb,V O . In contrast, Banerjee & Andrews (2006) used the moving
window (MW) technique of Leicht (1997) to determine a second-order polynomial
best-fit line through the data. A window (50 pixels wide) was stepped downstream
along the channel (1 pixel at a time) and was used to determine a second-order
polynomial best-fit line through the data. The second derivative of the best-fit line
was used to calculate αb,MW as

αb,MW =
ḧb

2Atg
, (5.3)

thus giving a local measure of the growth parameter as it develops along the length
of the channel. Ristorcelli & Clark (2004) (RC), used a self-similar analysis for small-
Atwood RT mixing to obtain an ordinary differential equation for the planar average
of the mixing layer half-width hb as

αb,RC =
ḣ2

b

4Atghb

. (5.4)

As an exact mathematical result (5.4) validates the form of heuristically derived
equations (Sharp 1984; Cook & Dimotakis 2001) that resulted from phenomenological
buoyancy-drag type models. For constant αb,RC , At and g, the solution to (5.4) (taking
only the positive root as physically realizable) can be written as

hb = h0 + 2
√

αb,RCAtgh0t + αb,RCAtgt2, (5.5)

where h0 is a virtual starting thickness, which effectively depends on how long it
takes for the flow to become self-similar, which in turn depends on the spectrum of
initial perturbations. Alternatively, if t = 0 is assigned to the point when the flow first
achieves self-similarity, then h0 corresponds to the thickness of the mixing region at
that time. Interestingly, (5.2) when expanded gives a form similar to (5.5):

hb =αb,V OAtg(t − t0)
2 =

(√
αb,V OAtgt − h

1/2
0

)2

, where h0 =αb,V OAtgt2
0 . (5.6)
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By comparing the terms in (5.5) and (5.6) and keeping in mind that x0 < 0 (when
accounting for the virtual origin), it is observed that

αb,V O = αb,RC. (5.7)

A similar relationship may be found between αb,MW and αb,RC based on (5.3) and
(5.4) by taking a time derivative of (5.4) gives

αb,MW = αb,RC + α̇b,RC

hb

ḣb

. (5.8)

For an RT mixing layer, both hb and ḣb are positive and as shown in figure 13, α̇RC

is negative, thus (5.8) suggests αb,MW � αb,RC , with the two values being nearly equal
in figure 13 when the flow is self-similar, i.e. α̇b,RC

∼= 0 for τ > 1.25.
An alternate method, used by Ramaprabhu & Andrews (2004), defines α based on

the vertical r.m.s. velocity fluctuation, v′
rms , at the centreline (CL) and relates it to the

mix-layer growth by

v′
rms = 2αCLAtgt. (5.9a)

Observations of the RT mixing layer shown in figure 7(a), where large-scale structures
span the RT mixing layer and dominate the velocity fluctuations, suggest that
expansion of the RT mix occurs due to large-scale velocity fluctuations that are
seen across the whole RT mixing layer and not just the edge. Thus, the growth
parameter αCL may be related to the other values of α as

αCL =
v′

rms

2Atgt
≈ ḣb

2Atgt
. (5.9b)

On differentiating (5.5) and equating ḣb with (5.9b), at late time the third term in (5.5)
dominates and

αCL ≈ αb,RC. (5.9c)
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Based on (5.7), (5.8) and (5.9c), we conclude that although the above definitions may
give different values of the growth parameter at early times, once the flow becomes
self-similar, they all give similar and closely related values of α. Figure 13 plots the
values of α based on the above definitions and evaluated from measurements for an
At = 0.04 in the present gas channel. It is observed that at late time (τ > 1.2), when
the flow has attained self-similarity, different definitions of α satisfyingly converge to
αb,V O =0.069, αb,MW = 0.065, αb,RC = 0.068 and αCL =0.067. The results given in (5.2)
through (5.8) are appropriate for small Atwood RT mixing (At < 0.1) when αb ∼ αs .
However, for large At � 0.1, the results are generally valid only for the bubble side.

Using the moving window definition of the growth parameter, the value of αb was
measured as 0.064 ± 0.005 for the current measurement in the range 0.04 � At � 0.6.
Similarly, the spike value of αs was measured and it was found to increase with At

number from a value of 0.065 at At = 0.04 to a value 0.088 at At =0.6. These values
of αb and αs obtained in the gas channel (plotted in figure 14) are comparable with
the LEM experiments of Dimonte & Schneider (1996, 2000) who report an average
value for αb of 0.053 ± 0.006 when At < 0.5, and a value for αb of 0.0496 ± 0.003
for At > 0.8. The present and LEM experiments consistently show an increase of αs

with an increase in Atwood number. However, our measurements of αb and αs are
higher than the LEM results by approximately 18 % for the entire Atwood number
range, with three possible explanations: the initial conditions for the experiments are
not the same (a small variation of alpha with initial conditions is now expected); or,
as Dimonte (2000, 2004) suggests, the difference may be due to the use of surfactants
(LEM fluids were immiscible) which might yield different growth parameters; or
perhaps the difference is due to lack of statistical convergence in the high-speed and
technically challenging transient LEM experiments.

As mentioned, transient experiments (e.g. the LEM or Rocket Rig) as well as
numerical simulations can lack statistical convergence, and it can be difficult to
calculate growth rate parameters based on half-mix-width data using (5.3) and (5.4).
To deal with this problem, an integral half mix-width for bubbles and spikes can be
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Based on half mix-widths Based on integral half mix–widths

αb,s =
ḣ2

b,s

4At ghb,s
αb,s,W =

Ẇ 2
b,s

4At gWb,s

Atwood number αb αs αb,W αs,W

0.04 0.068 0.068 0.066 0.068
0.097 0.065 0.067 0.065 0.069
0.259 0.064 0.071 0.061 0.074
0.47 0.063 0.081 0.058 0.082
0.6 0.060 0.088 0.056 0.091

Table 6. Growth parameters based on half mix-widths (hb and hs) and integral half
mix-widths (Wb and Ws).

defined following Andrews & Spalding (1990):

Wb = 6

∫ H/2

0

f1(1 − f1) dy = αb,WAtgt2, Ws = 6

∫ 0

−H/2

f1(1 − f1) dy =αs,WAtgt2,

(5.10)

where f1 is the plane-averaged volume fraction and the integral was taken over a
domain that includes the mixing region. The factor of 6 derives from considering
the width of a linear profile: indeed figures 8–11 show that mix profiles are linear
except at the edges, where they are slightly rounded, and so Wb and Ws seem
reasonable measures of half-integral mix-widths of bubbles and spikes respectively at
small Atwood number. The growth parameters (αb,W and αs,W ) were then calculated
by using W and Ẇ in the definition of ‘RC’ in (5.4). The results are tabulated in
table 6 and show that the growth parameters calculated by using ḣb,s and Ẇb,s give
similar values for the current measurement range of 0.04 � At � 0.6. Also, as shown
in figure 15, if the time evolution of the growth parameters are compared, it is seen
that αb,W has less noise than αb. Thus, an integral definition of mix-width may be
used to avoid statistical convergence issues in numerical simulations and transient RT
experiments. However, as a note of caution, interchanging mix-width measurements
(hb and hs) by integral mix-widths (Wb and Ws) should be used carefully at high
Atwood numbers (At > 0.5) as a problem occurs due to rounding of the volume
fraction profiles at the edges that may lead to similar measures for Wb and Ws with
Wb/Ws ∼ 1; whereas hb and hs based on 5 % and 95 % edge detection may give
hb/hs < 1, and thus Wb and Ws will give poor estimates of α if considered as a
measure of bubble/spike penetration. This also implies that the asymmetry between
the spike and bubble interpenetration will be reduced (at late time) if a ratio of
integral mix-widths are taken (Ws/Wb) instead of mix-widths based on the 5 % and
95 % volume fraction values (hs/hb).

5.2. Hot-wire measurements

The two hot-wire diagnostics (MPMO and S3WCA) described in § 4.2 were used
for measurements of various time-averaged and instantaneous statistics in the RT
mixing layer at Atwood numbers of 0.04 and 0.6. The MPMO single-wire technique,
based on evaluating the wire response function to variations in density, velocity and
orientation, was used for measuring detailed time-averaged statistics inside the RT
mixing layer at At = 0.04. However, limitations in the technique restricted its usage
to At � 0.25. The S3WCA technique, based on the concept of temperature as a fluid
marker, was more robust to provide instantaneous statistics for the large range of At
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Figure 15. Measurements of αb based on half mix-width (hb) and integral half mix-width
(Wb) obtained by using the Ristorcelli & Clark (2004) definition.

in our air–helium facility. The S3WCA diagnostics was first validated in the small
density difference regime (At � 0.04), and the results were compared with the MPMO
data and similar experiments done in a hot-water/cold-water water channel facility
at At ∼ 7.5 × 10−4. Upon validation in the low-Atwood-number regime, the S3WCA
technique was used for large At = 0.6 experiments. In this section, we report detailed
measurements and discuss the associated flow physics for both the low At = 0.04
experiment using MPMO and S3WCA techniques; and the high At =0.6 experiment
using the S3WCA technique.

5.2.1. Detailed measurements in low-Atwood-number Rayleigh–Taylor experiments

MPMO and S3WCA hot-wire measurements were made across the RT mixing
layer, and at various downstream locations in the gas channel (see table 5a). The
addition of helium to the RT mixing layer caused a small temperature gradient
(∼2◦C) along the vertical (y) direction (i.e. from the air to the air–helium mixture).
Variation in Atwood number due to this small temperature gradient is ∼4 % at an
Atwood number of 0.04. We took advantage of this small temperature gradient and
used a cold-wire probe (5 µm SN wire), coupled to a constant current anemometer
(CCA) unit, to determine the location of the geometric centreline of the RT mixing
layer (the reference point for our RT mix-width measurements). Since the Atwood
number of 0.04 is small, the RT mixing layer is symmetric as seen in the mix fraction
profiles (figure 8). At the start of an experiment, the cold wire was placed close to
the centreline of the RT mixing layer and the data were logged. A centreline offset
factor φ was computed after the logging process (Banerjee & Andrews 2006):

φ =

[
1 +

Cbottom
p

C
top
p

ρbottom

ρtop

(
Tbottom − Ti

Ti − Ttop

)]−1

, (5.11)
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where Cbottom
p and Tbottom were the specific heat and temperature of the helium–air

mixture (flow at the bottom section of the channel); Ctop
p and Ttop were the specific

heat and temperature of air (flow at the top section of the channel); and Ti was the
temperature of the mix. If φ �= 0.5, the position of the cold wire was readjusted and
the data logging process repeated. The cold wire was adjusted until φ approached a
value of 0.5 with an accuracy of ±5 %. Once the centreline was evaluated, a traverse
was used, with fixed steps, so that the location of the data point relative to the
centreline of the RT mixing layer was accurately known.

Measurements of molecular mix. We next report measurements for mean density,
r.m.s. density fluctuations, and molecular mix taken in the gas channel at an Atwood
number of 0.04 using the MPMO technique. Measured density fluctuation data of
the RT mixing layer were used to obtain a local measure of the degree of molecular
mixing θ , at different downstream centreline (y = 0) locations (τ =0.56–2.21), and at
various locations across the RT mixing layer at τ = 1.986 (x = 1.75m). The hot wire
was moved vertically in intervals of ∼9 cm across the RT mixing layer. Figure 16
plots the measured mix-fraction f1 across the RT mixing layer for an Atwood number
experiment of 0.04. The measurements obtained with the MPMO technique compare
well with mix-fraction profiles obtained from image analysis for the same Atwood
number experiment (see figure 8). The profile shape also compares well with our
previous results (Snider & Andrews 1994; Wilson & Andrews 2002; Ramaprabhu &
Andrews 2004) and those of other experiments (Linden, Redondo & Caulfield 1992;
Dalziel et al. 1999), as well as numerical simulations (Youngs 1984; Cook et al. 2004).
As might be expected for a small Atwood number of 0.04, the RT mixing layer is
symmetric about the centreline. Figure 17(a) shows the measured density fluctuation
self-correlations B2 and B0 at x = 1.75 m (τ =1.986) downstream from the splitter
plate. For these small-Atwood-number measurements, B2 and B0 show symmetry
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(2002).

about the centreline at y =0. Since at the centreline both fluids are present with
equal probability, i.e. f1 = f2 = 0.5, the two-fluid density fluctuation self-correlation,
B2, takes a value of 0.25. However, B2 quickly collapses to zero at the edges of the RT
mixing layer, which implies the presence of a single fluid. The mix density fluctuation
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Figure 18. Comparison of the evolution of the molecular mix parameter θ measured at the
centreline with Ramaprabhu & Andrews (2004) and Mueschke et al. (2006) as a function of
non-dimensional time.

self-correlation, B0, is about three times smaller at the centreline, and also collapses
to zero at the edges. Figure 17(b) plots the molecular mix parameter θ across the RT
mixing layer and inspection reveals that θ remains reasonably constant (∼0.7) across
this Sc ∼ 1 RT mixing layer, in agreement with earlier results (Wilson & Andrews
2002; Ramaprabhu & Andrews 2004) from the small-Atwood-number water channel.
However, beyond the edge of the RT mixing layer, where the probe sees only one
fluid, the value of θ increases. These high values of θ outside the mixing region
imply randomness and diffusion, which is due to noise in the density measurements
because there is only one fluid outside the mixing region. Hence, these large values
of θ outside the mixing layer (y/h < −1 and y/h > 1) should be ignored as the
molecular mix parameter is not well defined in that region. Measured values for
the molecular mix parameter θ in the gas channel (Sc ∼ 1) are comparable with the
water channel measurements of Ramaprabhu & Andrews (2004) (Pr ∼ 7), and the
brine/water experiments of Dalziel et al. (1999) (Sc ∼ 600), who report a late-time
value of θ ∼ 0.6–0.7.

The measured centreline time (downstream)-evolution of θ is shown in figure 18.
Ramaprabhu & Andrews (2004) report measurements of θ that reach a value of 0.7
at late time when the flow becomes self-similar. Mueschke et al. (2006) report lower
values of θ than Ramaprabhu & Andrews (2004) at the water channel facility, and
attributed this to a difference in the size of their thermocouple probes and to the
noise elimination techniques used in their work (Mueschke & Andrews 2006). Since
our probe is also limited to scales about two times bigger than the Kolmogorov scale
(see (5.13a)) we compare well with Ramaprabhu & Andrews (2004), but we would
expect lower values for θ if the probe was smaller. Figure 18 reveals two stages
of evolution for the molecular mixing fraction θ as the flow develops downstream,
namely a decrease in θ for τ < 0.4, followed by an increase for τ � 0.4. For the
first stage of the development period when τ < 0.4, the value of θ decreases rapidly
during the early time linear and weakly nonlinear growth of the initial perturbations,
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when there has been insufficient time for molecular diffusion to develop. In particular,
this early time behaviour of θ is attributed to an increase in the fluctuation levels
with the onset of instability, which in turn leads to a straining of the initial density
interface shed from the splitter plate that sharpens the density gradient and lowers θ .
Thus, at the centre plane the two fluids are ‘stirred’ with little molecular mixing for
τ < 0.4. The second late stage when τ � 0.4 is characterized by an increase in θ and a
transition to turbulent mixing. This is also demonstrated by inspecting the probability
density function (p.d.f.) of the density fluctuations as shown in figure 19 which was
obtained using the SW3CA technique at different downstream locations of τ = 0.76
and τ = 1.33. At early time, τ = 0.76, the p.d.f. exhibits a bi-modal distribution with
peaks that correspond to two pure fluids. However, at late time the probability of
small density fluctuations (mixed fluid) increases, resulting in a broad peak in the
centre of the distribution. This broad peak confirms an increased level of molecular
mixing shown in figure 18 at late time.

A similar transition at τ � 0.4 was observed by Wilson & Andrews (2002) in
their related ‘water channel’ experiment. They ascribed development of θ during
this second stage as due to flow complexity associated with the development of
strong nonlinearities. In particular, secondary Kelvin–Helmholtz instabilities develop
between rising bubbles and falling spikes, rapidly increasing the interfacial area
between the fluids and thus associated molecular diffusion. Our flows were observed
to act in the same fashion, and agree with this description. Ristorcelli & Clark (2004)
also report a similar two-stage behaviour of θ; however, their simulations used a
zero initial velocity field and perturbed the density field, whereas, in the present
experiments, perturbations shed by the splitter plate are velocity fluctuations, which
in turn induce density fluctuations (Ramaprabhu & Andrews 2004), and so a direct
comparison cannot be made. Perhaps more usefully, the data for θ have been replotted
in figure 20 as a function of the Reynolds number (Re1) for the developing RT mixing
layer. Inspection of figure 20 reveals that θ becomes self-similar (i.e. constant) at a
Re1 of ∼2000 for three data sets, i.e. the current work at low Atwood number ∼0.04,
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Figure 20. Comparison of the evolution of the molecular mix parameter θ measured at the
centreline (At = 0.04) with Ramaprabhu & Andrews (2004) and Mueschke et al. (2006) as a
function of (a) non-dimensional time τ .

and the hot/cold water channel measurements of Ramaprabhu & Andrews (2004)
and Mueschke et al. (2006) that operated at small Atwood number ∼1.0 × 10−3 and
Prandtl number of 7. Moreover, the minimum value for θ (i.e. the end of the first stage
of mixing) occurs at Re ∼ 100. Thus, we identify a nonlinear mixing transition region
(Dimotakis 2000) that runs from 100 < Re < 2000, and leads from the development of
single modes associated with a high-strain field, through mode coupling and continued
development of long wavelength initial conditions, to a region with sufficient time
and interfacial area between the gases that allows the development of self-similarity
in the molecular mixing. Similar time variations of θ has been reported in recent
large (30723) direct numerical simulations (Cabot & Cook 2006) of RT flows. We
next compare θ with an alternate molecular mix parameter Ξ , defined to quantify
molecular mixing for a fast reaction (Cook & Dimotakis 2001; Cook et al. 2004;
Youngs 2003). The parameter Ξ measures the total product formed in the RT mixing
layer relative to the product that would be formed if all the entrained fluid were
completely mixed in each plane (assuming f1 = 0.5 is stoichiometric). The value of
Ξ is limited by the amount of lean reactant (light fluid) in the mixture (Cook &
Dimotakis 2001) and is defined as (Youngs 2003)

Ξ =

∫
min(f1, f2) dt∫
min(f 1, f2) dt

. (5.12)

The parameters Ξ and θ have been measured at various downstream centreline
locations (see figure 21) as well as across the RT mixing layer for an Atwood number
experiment of 0.04 (see figure 22). It is observed that both Ξ and θ are approximately
equal, and this trend is also observed in numerical simulations (Cook et al. 2004;
Youngs 2003).
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Figure 21. The evolution of mix parameters θ (for slow reaction) and Ξ (for fast reaction)
measured at the centreline (At = 0.04).
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Figure 22. Comparison of molecular mix parameters θ (for slow reaction) and Ξ (for fast
reaction) across the RT mixing layer at τ = 1.986 (At = 0.04, x = 1.75 m from the splitter plate).

Turbulence length and time scales. Turbulent mixing may be viewed as a three-stage
process of entrainment, dispersion and diffusion, spanning a full spectrum of length
and time scales in the flow (Eckart 1948). For fluid entrained at the largest scales of the
flow, scalar dispersion and mixing is hosted on the full spectrum of scales encountered
in the turbulence cascade. Dimotakis (2005) noted that entrainment is driven by large-
scale dynamics, dispersion by large- and intermediate-scale dynamics, and molecular
mixing by the small (viscous/diffusive) scales. With this in mind, we review various
inner scales of turbulence in our RT flow, with the outer scale being hb or hs .
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The Kolmogorov scale, ηk , gives an estimate of the smallest eddies that are
responsible for dissipation of energy (Pope 2000) and is represented for our experiment
as

ηk ∼ LRe
−3/4
1 , (5.13a)

where L is a measure of large-scale turbulence and was taken to be (hb + hs)/2.
The definition (5.13a) holds true only when Re1 (see (3.1)) is a Reynolds number
based on the integral scale characteristic velocity (

√
gh) and the integral length scale

(2h = hb + hs). In the present experiment, at τ =1.986 (x = 1.75 m) the Re ∼ 7500,
giving ηk as 0.048 cm. The Taylor microscale length scale, ηT , is given by Pope (2000):

ηT ∼
√

10LRe
−1/2
1 , (5.13b)

giving ηT as 1.168 cm (the Taylor–Reynolds number: ReT = ηT v′/ν ∼ 110). The
Taylor length scale defines the spatial scale across which local velocity values may
be treated as approximately invariant (Pope 2000). The hot-wire probe used for
the present measurements were 5 µm in diameter and 0.125 cm long. Since, the
mean channel velocity was 50 cm s−1 for the At = 0.04 experiment, the maximum
frequency component in the density fluctuations based on the mean velocity and ηk

is ωmax =Um/2ηk = 520 Hz, where ωmax is the smallest frequency component of the
density fluctuations that corresponds to a size of twice ηk . The spatial resolution of the
hot wire allows for a maximum measurable frequency of ωmax =Um/2lprobe = 200 Hz.
This implies that the probe has approximately half the necessary resolution to resolve
the highest frequency component of the density fluctuations and cannot resolve
the complete wavenumber range of the velocity and density (for simultaneous
measurements) fluctuation power spectra. However, Wilson & Andrews (2002)
examined the cumulative energy distribution of density fluctuations in RT mixing
and their measurements show that only 1 % of the energy content is in the top 10 %
of the largest wavenumbers of the spectrum. Thus, although we do not resolve to the
Kolmogorov length scale ηk , we infer from the cumulative distribution plot (Wilson &
Andrews 2002) that our hot wire measures over 90 % of the wavenumber range
and thus represents over 99 % of the power spectrum associated with the density
fluctuations.

For an energy cascade, a quantity of central importance is the rate at which energy
is transferred from the large eddies to the smaller scales (Pope 2000). We thus review
various turbulent time scales that are of relevance to our flow. The Kolmogorov time
scale is calculated according to Pope (2000) as

τk ∼ hb

v′
rms

Re
−1/2
1 , (5.14)

where hb is the half mix-width and v′
rms is the r.m.s. vertical velocity fluctuation, giving

τk in the present experiment as 0.0217 s. The integral turbulent time scale is of the
same order as the large-scale entrainment time scale and is calculated as

τL ∼ hb

v′
rms

. (5.15)

The integral time scale for our RT mixing layer is ∼1.882 s. The time scale for
scalar molecular mixing is of the same order as the Kolmogorov time scale and is
calculated as

τm∼ η2
k

νmix

∼ hb

v′
rms

Re
−1/2
1 , (5.16)
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Figure 23. Comparison of measured αCL by different techniques: MPMO, multi-position
multi-overheat method (current work) at At = 0.04; S3WCA, combined three-wire and
cold-wire method (current work) at At = 0.03; MPSW, multi-position method (Banerjee &
Andrews 2006) at At = 0.035; and PIV, particle-image-velocimetry measurements done at the
water channel (Ramaprabhu & Andrews 2004) at At = 7.5 × 10−4.

where ηk is the Kolmogorov length scale defined in (5.10), giving τm as 0.0217 s. For
reference, we take the molecular mixing time scale to characterize the ‘mixing rate’
in our Rayleigh–Taylor flow. If the two fluids are immiscible, the molecular mixing
time τm → ∞ and the scalar mixing-rate are considered to be ‘slow’. The mixing rate
is defined to be ‘fast’ when the molecular mixing time scale τm → 0 and is shorter
than the Kolmogorov time scale, which occurs in cases where the two fluids are
highly miscible (Sc � 1). Recent measurements by Mueschke et al. (2009) in a high-
Schmidt-number (∼103) RT mixing layer have indicated that Schmidt number has a
smaller effect on the degree of molecular mixing at higher Reynolds number. Based
on the measured time scales for our air–helium experiment, the molecular mixing rate
described here is considered as ‘moderate’. This is also supported by our measure of
the molecular mix parameter for both slow and fast reaction rates (θ and Ξ ) that are
almost identical values.

Measurements of velocity–velocity correlations. The centreline r.m.s. values of the
vertical, v′

rms , horizontal, u′
rms , and spanwise, w′

rms velocities were measured using the
MPMO technique (at seven downstream locations: τ = 0.567, 0.851, 1.135, 1.418, 1.702,
1.986 and 2.213) and the S3WCA technique (four downstream locations: τ =0.76,
0.95, 1.14 and 1.33) in experiments with an Atwood number ∼0.03–0.04. As defined
in (5.9a), a vertical r.m.s. velocity fluctuation, v′

rms , can be related to the RT mixing
layer width by (Ramaprabhu & Andrews 2004):

v′
rms =

dh

dt
= 2αCLAtgt = 2αCLAtg

x

Um

. (5.17)

Figure 23 plots the measured growth parameter, αCL, at these 11 downstream locations,
compared with the MPSW hot-wire technique in the gas channel (Banerjee & Andrews
2006) at Atwood number 0.035, and a particle image velocimetry (PIV) measurement
in the water channel at Atwood number 7.5 × 10−4 (Ramaprabhu & Andrews 2004).
Figure 23 shows that all four sets of measurements are found to be consistent, and
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Figure 24. Velocity correlations across the RT mixing layer at x = 1.75 m (τ = 1.986) for an
At =0.04 experiment. (Note: The error in these measurements of u′v′ non-dimensionalized as
shown is ±2 %).

α asymptotes to a value of 0.065–0.07 at late time so that the RT mixing layer
grows quadratically far downstream from the splitter plate. For the low-Atwood-
number experiments (At = 0.03 ∼ 0.04 with the MPMO and S3WCA techniques), the
RT mix is symmetric and hence v′

b = v′
s = v′

rms . However, for high-Atwood-number
experiments (At > 0.25), the flow becomes asymmetric and a conditional sampling
technique (described later in § 5.2.3) must be used to measure the bubble and spike
vertical velocity fluctuations, v′

b and v′
s .

The MPMO measurements in figure 16 show that the two end points were outside
the RT mixing layer and have been neglected in what follows. Figure 24 plots non-

dimensional velocity correlations: v′2, u′2 and u′v′ across the RT mixing layer. The
velocity correlations were non-dimensionalized by using a ‘free-fall’ velocity scale of
Atgx/Um. In this no shear experiment, gravity drives the vertical velocity fluctuations,
generating the characteristic ‘mushroom’ shape of a Rayleigh–Taylor instability, and
so v′2 dominates over u′2 everywhere across the RT mixing layer. In buoyancy-driven
mixing, there is no source to correlate the two components of velocity, as in shear-
driven flows, thus the measured cross-correlation u′v′ shown in figure 24 was found to
be negligible across the RT mixing layer. The lack of a cross-correlation between the
two components of velocity may also be explained graphically by the RT mushroom-
shaped structures that have left–right symmetry about the centre (see figure 25). The
ratio v′

rms/u′
rms across the RT mixing layer is plotted in figure 26, and is approximately

constant across the RT mixing layer at ∼1.8, suggesting an existing equilibrium
between the u′

rms and the v′
rms kinetic energy production terms everywhere in the RT

mixing layer. This also implies that mushroom-shaped structures are convected up
and down the RT mixing layer with little change in shape. Ristorcelli & Clark (2004)
suggest that large-scale anisotropy between u′2 and v′2 can be characterized through
the normalized anisotropy tensor, bij , defined as (Pope 2000)

bij =
uiuj

ukuk

− δij

3
. (5.18)
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Figure 25. Illustration of the left–right symmetry about the centre of a mushroom-shaped
structure so that u′v′|right = −u′v′|left .
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Equation (5.16) reduces to the following form for RT:

b =

⎛
⎜⎝

buu buv buw

bvu bvv bvw

bwu bwv bww

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

u′u′

2k
− 1

3
0 0

0
v′v′

2k
− 1

3
0

0 0
w′w′

2k
− 1

3

⎞
⎟⎟⎟⎟⎟⎟⎠

, (5.19)
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Figure 27. Profiles of the anisotropic tensor (buu & bvv) across the RT mixing layer at
x = 1.75 m (τ = 1.986) for an experiment at At = 0.04.

where k ( = ukuk/2) is the turbulent kinetic energy, and b is the deviatoric part of the
Reynolds stress tensor normalized by the kinetic energy term. For isotropic turbulence,
buu = bvv = bww = 0, and thus b = 0. More generally, −1/3 � bij � 2/3, where the upper
and lower limits represent one-dimensional and two-dimensional distributions of the
turbulent kinetic energy respectively (Ristorcelli & Clark 2004). Thus, bij characterizes
the geometry of turbulence and is independent of the amplitude of the fluctuations.
Figure 27 plots the anisotropy tensor across the RT mixing layer at a downstream
location of x = 1.75m (τ = 1.986) from the splitter plate. As expected, most of the
turbulent transport appears in the vertical direction. It also appears that bαα → 0
near the edges of the RT mixing layer suggesting isotropy. The velocity fluctuation
statistics are reasonably constant across the RT mixing layer, and this is consistent
with the observations of Ramaprabhu & Andrews (2004).

Anisotropy and dominance of the vertical velocity fluctuations, v′
rms , can also be

observed in the p.d.f.s of the measured centreline velocity fluctuations of the mixing
layer, as shown in figure 28. The vertical velocity fluctuations, v′, exhibit a flat p.d.f.
due to a broad spectrum of scales that develop from the rising bubbles and falling
spikes within the mixing layer. However, both streamwise and cross-stream velocity
fluctuations, u′ and w′, exhibit approximately Gaussian behaviour, as small velocity
fluctuations dominate and were more likely to be present. Quantitatively, the flatness
of these p.d.f.s can be compared using the kurtosis for the velocity fluctuations
as Ku = u′4/(u′2)2, Kv = v′4/(v′2)2, Kw = w′4/(w′2)2. For a Gaussian distribution the
kurtosis is 3; as kurtosis decreases the distribution flattens. For the measured velocity
fluctuations at τ =1.33, a kurtosis of 2.9, 3.0 and 2.2 was found for u′, w′ and
v′, respectively. This compares well with the measured kurtosis for the centreline
vertical velocity fluctuations in the water channel facility (Ramaprabhu & Andrews
2004) who measured values of Kv = 2.3 at τ = 1.21. The low value of Kv (< 3.0)
implies that rather than having short, intermittent bursts of v′ and related turbulence,
the vertical velocity fluctuations and turbulent structure of the rising bubbles and
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Figure 28. P.d.f. of the measured centreline velocity fluctuations using the S3WCA technique
at the centreline of the mixing layer for At = 0.03 and τ = 1.33.

falling spikes generates a broad spectrum of scales. Dominance of vertical velocity
fluctuations is consistent across the mixing layer (Ramaprabhu & Andrews 2004). The
third moment of the velocity field represents the skewness of the velocity p.d.f.s as

Su = u′3/(u′2)3/2, Sv = v′3/(v′2)3/2, Sw = w′3/(w′2)3/2. The measured values of Su, Sv and
Sw ∼ 0 at the centreline. However, the distribution of the measured vertical velocity
fluctuations does change the behaviour away from the mixing layer centreline as
indicated by the skewness. Measured p.d.f.s of the vertical velocity fluctuations at
τ = 1.33 are shown in figure 29 at the mixing layer centreline (f v,1 = 0.51, Sv = 0.05),
and in the top half of the mixing layer with average volume fractions of f v,1 = 0.65
(Sv = 0.43) and f v,1 = 0.77 (Sv = 0.90). As the volume fraction of f v,1 increases
(moving into the top half of the mixing layer) more heavy fluid is present, and
negative velocity fluctuations become more likely as heavy fluid entrained at the edge
of the mixing layer is transported down through the mixing layer. This results in the
observed asymmetry in the measured vertical velocity fluctuation p.d.f. In addition,
the intensity of the turbulence in the mixing layer decreases towards the edges of the
mixing layer, resulting in a narrower range (smaller variance) of measured vertical
velocity fluctuations.

Measurements of velocity–density correlations. Figure 30 shows the evolution of
measured centreline values obtained from the hot-wire techniques for the mass flux
term ρ ′v′, which serves as the primary turbulent mass transport term in our RT mixing
layer. The correlation has been normalized by the product of the density difference,
�ρ, and Atgx/Um (the free-fall velocity). The figure shows that the normalized mass
flux term ρ ′v′/(�ρAtg x/U ) reaches a constant value when the flow becomes self-
similar at approximately a value of τ = 1.5. Ristorcelli & Clark (2004) show similar
behaviour in their normalized mass flux term (normalized by h1/2) as the flow attains
self-similarity. The molecular mix parameter, θ , reaches self-similarity at a value
of τ = 0.9 as shown in figure 18. It is perhaps not surprising that θ attains self-
similarity before the mass flux, as density fluctuations (ρ ′) drive velocity fluctuations
(v′) in our ‘moderately’ fast experiment, and so must settle first. Figure 31 shows the
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Figure 30. Evolution of non-dimensional ρ ′v′ (primary transport term)
and ρ ′u′ for At = 0.04.

non-dimensional values of ρ ′v′ and ρ ′u′ across the RT mixing layer at τ = 1.986.
It is seen that ρ ′u′ is negligible across the RT mixing layer, due to the left–right
symmetry of the mushroom-shaped structures, but ρ ′v′ has a peak, at the centre
of the RT mixing layer where the density and the vertical velocity fluctuations are



168 A. Banerjee, W. N. Kraft and M. J. Andrews

y/h
0

–0.030

–0.025

–0.020

–0.015

–0.010

–0.005

0

0.005

0.5 1.0 1.5–0.5–1.0–1.5

{ρ
′ v

′ , 
ρ

′ u
′ }

/{
�

ρ
(A

tg
x/

U
m

)}

ρ′v′/{�ρ(At gx/Um)}

ρ′u′/{�ρ(Atgx/Um)}

h = αAt gt2 = 0.336 m

At = 0.04, α = 0.07

x = 1.75 m, Um = 0.5 m s–1

τ = 1.96

Figure 31. Profiles of non-dimensional ρ ′v′ and ρ ′u′ across the RT mixing layer at τ =1.986
for At =0.04 (Note: the error in these measurements of ρ ′u′ non-dimensionalized as shown is
±2.5%).

strongly correlated. The vertical mass flux is negative because a light packet of fluid
is associated with a ρ ′ ≡ ρ − ρ < 0 and travels upwards with a velocity v′(v′ > 0) and
vice versa for a heavy packet of fluid (ρ ′ > 0, v′ < 0), giving a negative correlation
between ρ ′ and v′.

Figure 32 shows the p.d.f. for ρ ′v′ inside the RT mixing layer. As in free shear flows,
where a bell-shaped distribution (non-Gaussian) is expected (Pope 2000), a significant
deviation from Gaussian behaviour was found. The ρ ′v′ p.d.f. at the RT mixing layer
centreline for τ =1.33 has a large kurtosis, Kρ′v′ = 10.6, and skewness, Sρ′v′ = −3.8
(K = 3, S = 0 for Gaussian), which implies that the mass of fluid at the centreline
(vertical mass flux) is predominantly falling. A large peak is found about 0 where
small density fluctuations, corresponding to molecularly mixed fluid, result in weak
correlations of the velocity and density fluctuations. However, when comparing early-
and late-time p.d.f.s, larger negative magnitudes of the turbulent mass flux become
more likely as the mixing layer continues to grow. As the RT mixing layer develops
downstream gas is entrained into the RT mixing layer at a faster rate, and the layer
becomes more turbulent, resulting in large magnitudes of the turbulent mass flux as
fluid is transported across the mixing layer. Indeed, the differences in the vertical
and horizontal turbulent mass fluxes can also be observed through the measured
p.d.f. of ρ ′v′ and ρ ′w′ shown in figure 33. The distribution of ρ ′w′ is centred, and
approximately symmetric about zero (Sρ′w′ = 0), differing sharply with the p.d.f. of ρ ′v′.
Due to symmetry of the mushroomed-shaped plumes (see figure 25), the symmetric
behaviour of ρ ′w′ results in the negligible net contribution of the horizontal mass flux,
in contrast with the vertical direction, where mass is transported across the mixing
layer through the rising and falling bubbles and spikes. These differences highlight
the uniqueness of the buoyancy-driven turbulence and the importance of the vertical
turbulent mass flux in the RT mixing layers.
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Measurement of energy density spectra. The measured energy density spectra for
v′, f v,1 and ρ ′v′ (mass flux) at the centreline of the mixing layer using the S3WCA
technique are shown in figure 34(a–c) for early and late times corresponding to
τ = 0.76 (Re1 = 750) and τ =1.33 (Re1 = 1450) at Atwood number 0.03. Fiducials
corresponding to k−5/3 and k−3 are also shown in figure 34(a–c), which correspond
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Figure 34. The measured energy density spectra for v′, ρ ′ and ρ ′v′ at the centreline of the
mixing layer using the S3WCA technique for an At =0.03 experiment. Compensated spectra
demonstrating the −5/3 slope as a flat line is also shown at τ =1.33 for each energy density
spectra. The spectra are normalized by �ρ, K and H.

to the spectral slopes of the two-dimensional Kolmogorov spectrum for the inertial
and dissipation subranges of length scales for high Re turbulent flows, respectively.
Single-point hot-wire measurements result in a one-dimensional spectrum; however,
the Kolmogorov spectrum can still be used as reference. At early time the mixing
layer is transitioning to turbulence and an inertial subrange of scales, which transfers
energy from the large energy containing length scales to the small viscosity dominated
scales, responsible for dissipation, is not found. However, at τ = 1.33 the mixing layer
becomes turbulent and loses its two-dimensional nature from the initial conditions
and develops three-dimensional structure. The energy cascade from large to small
length scales results in an observable inertial subrange of scales in the v′ and
ρ ′ fluctuations, as shown by the compensated energy density spectrum, Ek5/3, in
figure 34(d ). Compensated energy density spectra demonstrate the k−5/3 behaviour
as a flat region in the spectra which allows the inertial subrange of scales to be
identified. The observation of inertial scales at Reh of 1400 and τ = 1.33 is consistent
with previous measurements in the water channel by Ramaprabhu & Andrews (2004)
and Mueschke et al. (2006). From the ρ ′v′ energy density spectra also shown in
figure 34(c), it is evident that fluctuations in the turbulent mass flux are contained
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mostly in the large scales of the developing turbulence. This corresponds to large-
scale bubbles and spikes of interpenetrating fluid that expand the mixing layer as it
develops. As the mixing layer grows, the integral scales increase as larger quantities
of fluid are entrained into the edges of the mixing layer, giving an increase in the
fluctuations of the turbulent mass flux for large scales of the turbulence. It is unclear
in the ρ ′v′ energy density spectra, however, what power law decay is observed and no
previous measurements have been found in the literature for RT-driven turbulence.
For low-Reynolds-number turbulent flows, such as decaying grid turbulence with
passive scalars (Mydlarski 2003), the co-spectrum for velocity and passive scalars
was found to closely follow the behaviour of the velocity field (although this is not
buoyancy-driven). We plot the power spectral density of the mass flux ρ ′v′ as it a
primary transport term in an RT flow and a complete characterization is important
for development and validation of closure models for such flows. There also appears
to be a strong correlation between the ρ ′v′ energy density spectra and the v′spectrum
measured here. Therefore, the k−5/3 and k−3 lines are added as a reference. However,
the mixing layer does not have a sufficient range of scales to make a definitive
assessment of the spectral behaviour. To better determine the spectral distribution of
energy in turbulent fluctuations, a higher Reynolds number (larger range of scales) is
required. Similarities between the distribution of energy in v′and ρ ′v′ are more clearly
seen in the compensated energy density spectra of figure 34(d ), as both compensated
spectra show similar distributions of energy throughout the range of length scales
measured.

Energy budget. From our simultaneous measurements of velocity and density fields,
the net kinetic energy dissipation per unit cross-section from the initial state of the
flow has been calculated, in a fashion similar to Youngs (1994) and Ramaprabhu &
Andrews (2004). However, our use of MPMO differs from Ramaprabhu & Andrews
(2004) who used a particle image velocimetry diagnostic to simultaneously measure
density and turbulent KE. The initial potential energy per horizontal unit cross-
section, PEi , associated with the flow, is calculated assuming a step-function at y =0
(centreline) for the density profile at τ = 0. Thus,

PEi =

∫ hb

−hs

ρstepgy dy =

∫ 0

−hs

ρ1gy dy +

∫ hb

0

ρ2gy dy. (5.20a)

At τ = 0, the kinetic energy per unit cross-section KE i ∼ 0, since there is negligible
energy associated with initial velocity fluctuations. Further downstream the potential
energy at τ = 1.986 is computed from the measured density profile as

PE f =

∫ hb

−hs

ρ̄gy dy =

∫ 0

−hs

ρgy dy +

∫ hb

0

ρgy dy ∼=
n∑

i = 0

ρigyi�y. (5.20b)

The potential energy released to the flow by τ = 1.986 is then given by
PEreleased = PE f − PEi . Some of this energy is converted into kinetic energy, which
can be directly obtained from our measured velocity profiles of u′

rms and v′
rms , and

the remainder has been dissipated. Axisymmetric mushroom structures imply we may
take the turbulence as homogeneous with respect to the streamwise direction x and
the spanwise direction z, and set u′2 =w′2 based on known properties for the RT
mixing layer. Then,

KE generated =
1

2

∫ hb

−hs

ρ(2u′2 + v′2) dy, (5.21)
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and the net kinetic energy dissipation is given by

D = PEreleased − KEgenerated . (5.22)

Thus, the net KE dissipation as a fraction of the potential energy released, D/PEreleased ,
was determined from our measurements at At = 0.04 in the present gas channel to be
0.48 (i.e. 48 %) at τ ∼ 1.986 (for At = 0.04). Ramaprabhu & Andrews (2004) obtained
a value of 0.49 at τ ∼ 1.21. Youngs (1991) reported a value of 0.54 obtained from
three-dimensional numerical simulations at At = 0.2. The value obtained from two-
dimensional simulations (Youngs 1991) was significantly less (D/PEreleased ∼ 0.06)
since dissipation is primarily a three-dimensional mechanism. For a self-similar
mix, characterized by the length scale gt2, it is expected that D/PEreleased and
KE generated/PEreleased become constant in the self-similar regime (Youngs 1991;
Ramaprabhu & Andrews 2004). Thus, we find good agreement between the present
experiments and related, but higher Atwood number, three-dimensional simulations
and the PIV-based measurements of Ramaprabhu & Andrews (2004).

Evaluation of turbulence model constants. Our data for At = 0.04 are sufficient for us
to perform several turbulence model constant evaluations. In particular, we consider
the primary momentum transport flux ρ ′v′, for which a model representation is to
use the gradient diffusion hypothesis (Pope 2000) as

ρ ′v′ = − νt

σt

∂ρ

∂y
= −Cµk1/2�m

σt

∂ρ

∂y
, (5.23)

where νt is the turbulent viscosity and the scalar turbulent Prandtl number, σt , takes
a value of 0.7 (as will become evident this value is somewhat arbitrary and is selected
because it is a typical value used in free mixing layer calculations; Blackwell 1973;
White 1991; Snider & Andrews 1996). The primary transport in our small Atwood
experiments is associated with the largest structures and these are of size hb ( = hs at
small Atwood), thus we take the integral length scale lm as hb, and the density gradient
∂ρ/∂y = �ρ/2hb (the factor 2 arises because hb is the half RT mixing width and, as
figure 8 shows, the density profile is reasonably linear across the small Atwood RT
mixing layer). Our measurements at the centreline indicate that u′2 = w′2 = 0.3 v′2 so
the turbulence kinetic energy [k = (u′2 + v′2 + w′2)/2] is given by k = 0.8v′2. Figure 23
plots the collapse of the centreline r.m.s. vertical velocity (v′

rms ) to obtain a measured
centreline αCL of 0.07. Using (5.9b), the centreline turbulence kinetic energy is given
by k =0.8(2αCLAtg x/Um)2. Substitution into (5.23) gives the following expression for
a measurement of Cµ:

Cµ = − σt√
0.8�ραCL

ρ ′v′{
Atg

x

Um

} . (5.24)

Figure 30 plots measured values of ρ ′v′/(�ρ(Atg x/Um)), that at late time (τ = 1.986)
reach a value of −0.024, giving a corresponding value for Cµ of 0.288. A typical value
quoted for Cµ for a homogeneous turbulent fluid is 0.09 (Speziale 1991; Launder &
Spalding 1974), that corresponds to turbulent shear flows and flow situations where
the mixing layer grows at t or a fractional power of t (Pope 2000). In our present
buoyancy-driven flow case, the mixing layer grows as t2 and there is time-lag in
transferring the turbulent kinetic energy to the smaller scales, resulting in a change in
value of the constant Cµ. Measured Cµ at the centreline for the different downstream
locations are given in table 7, and show that the value of Cµ remains approximately
constant at various downstream locations, and is independent of the Reynolds number
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x (cm) τ ρ′v′
�ρ(At gt)

αCL Cµ

50 0.567 −0.0482 0.12169 0.3098
75 0.851 −0.03812 0.09268 0.3219

100 1.135 −0.02878 0.07709 0.2922
125 1.418 −0.02634 0.06743 0.3057
150 1.702 −0.02444 0.06741 0.2838
175 1.986 −0.02397 0.06520 0.2877
195 2.213 −0.02363 0.06583 0.2809

Table 7. Turbulence modelling constant (Cµ) at different downstream distances (x) and
corresponding non-dimensional times (τ ).

of the developing flow. This constant value for Cµ is because it is determined at the
integral scales of the flow, which in our case are dominated by large-scale developing
plumes. The gradient diffusion model constant Cµ can also be evaluated from the
measurement of the integrated dissipation D given in (5.22). Based on a mixing-length
model, the dissipation ε can be modelled as (Pope 2000)

ε = Cµ

k3/2

lm
, (5.25)

where lm is a mixing length. Integrating (5.25) across the mixing layer, we obtain∫ hb

−hs

εdz = D = Cµ

∫ hb

−hs

k3/2

lm
dz. (5.26)

Since D is the integrated dissipation and Cµ does not change significantly along the
flow (see table 7), we can use (5.26) to check our measurement of Cµ from the gradient
diffusion approximation. As before lm ∼ hb, then from (5.26) we obtain a value for Cµ

of 0.26 at x = 1.75m (τ =1.986) from the splitter plate in good agreement with the
value of 0.288 from the gradient diffusion approximation above.

5.2.2. Detailed measurements in high-Atwood-number Rayleigh–Taylor experiments

We also report the first experimental measurements of turbulent statistics in the
RT mixing layer at large Atwood numbers. The S3WCA diagnostic was used in
conjunction with temperature as a fluid marker to measure both instantaneous and
time-averaged statistics and their spectra at At = 0.6. A temperature difference of ∼5◦C
was used between the inlet streams. Since the RT mixing layer at these high-Atwood-
number experiments contain large concentrations of helium, fv,He � 0.88, special care
has been exercised in analysing the hot- and cold-wire traces. The raw data were
filtered to four times the spatial resolution of the combined probes (freqmax = 83 Hz)
to increase the probability that both the cold- and hot-wire sensors measure the same
fluid structure. Details about the hot-wire analysis and data reduction procedure may
be found elsewhere (Bruun 1995; Kraft 2008; Kraft et al. 2009).

Figure 35(a) shows a comparison of the molecular mix parameter θ measured in
the At = 0.6 RT mixing layer with our low-Atwood experiments. Since the cold-wire
thermometer and subsequent measurements of density can be analysed independently
of the hot-wire diagnostic, the cold-wire data were re-analysed at its Nyquist limit
of 666 Hz at Um =2.0 m s−1 to include the maximum range of scales possible in the
measurement of θ . The values are plotted in figure 35(a) to compare with our low-
Atwood-number measurements. It was found that the time evolution of θ at At =0.6 is
similar to the low-Atwood measurements (using the MPMO technique), and as before,
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Figure 35. Measurements of (a) molecular mix parameter θ , (b) growth parameter αCL and
(c) non-dimensional vertical turbulent mass flux at the mixing layer centreline for At = 0.6
compared with the low At =0.03–0.04 measurements using MPMO and S3WCA techniques.
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Figure 36. P.d.f. of the (a) velocity fluctuations, v′ (m s−1), (b) density fluctuations, ρ ′ (kg m−3)
and (c) turbulent mass flux (velocity–density fluctuations), ρ ′v′ (kg m−2 s−1) at τ =0.78 at the
mixing layer centreline for At = 0.6.

demonstrates a significant decrease in the amount of molecular mixing at early time
in the developing buoyancy-driven mixing layer. In addition, when considering the
combined data from our current work at low- and high-Atwood-number mixing
layers of helium and air (Sc ∼ 1), larger magnitudes of molecular mixing are found
overall when compared with the water channel results of Mueschke et al. (2006)
with Pr ∼ 7. Mixing layers associated with higher Sc (or Pr in the water channel
experiments) show a reduced amount of molecular mixing due to lower rates of
molecular diffusion (whether mass or temperature diffusion). Details about molecular
mixing at high Sc flows can be found in Mueschke et al. (2009) who have used a
reacting RT flow to determine the effect of molecular diffusivities on the dynamics of
turbulent mixing in RT mixing layers. Figure 35(b) compares the growth parameter,
αCL at At =0.6 with low-Atwood measurements. The figure shows that early time
(τ � 0.78) values of αCL for the high-Atwood measurement are similar to the measured
values for At � 0.04, and that the primary turbulent mass flux, ρ ′v′, at At = 0.6, when
non-dimensionalized using (5.24) was similar to the measured values at At < 0.04
(see figure 35c).

Since the S3WCA diagnostic also yields instantaneous information for the
fluid turbulence, p.d.f.s for density and velocity fluctuations at τ = 0.78 are
shown in figure 36(a–c) at the mixing layer centreline (y = 0) for At =0.6. The
kurtosis of the velocity fluctuation distributions, a measure of the flatness of
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Figure 37. The measured energy density spectra for v′, ρ ′ and ρ ′v′ at the centreline of the
mixing layer for At = 0.6, τ = 0.78 and Um = 2.0 m s−1. The reduced resolution to compensate
for large concentrations of helium limits the frequency response to 83 Hz.

the distribution, is Kv = 3.3 and Kw = 4.6. These values are larger than reported
earlier for At = 0.03 at τ = 1.33 of Kv = 2.17 and Kw = 2.97. The kurtosis of the
cross-stream velocity fluctuations is 40 % larger than the kurtosis of the vertical
velocity fluctuations, demonstrating the anisotropy of buoyancy-driven turbulence.
For τ = 0.78 and At = 0.6 the ratio of the r.m.s. of vertical to cross-stream velocity
fluctuations is 1.5. The density fluctuation p.d.f., also shown in figure 36(b), shows a
bi-modal distribution as seen at At = 0.03 for a similar time of evolution. The p.d.f.
of the vertical turbulent mass flux, ρ ′v′ at τ =0.78 is shown in figure 36(c), and is
similar to that found at the low-Atwood-numbers experiment (see figure 32). Primarily
negative turbulent mass fluxes in the vertical direction were expected, as bubbles of
mostly light fluid rise and spikes of mostly heavy fluid fall through the mixing layer.
This negative correlation of vertical velocity and density fluctuations results in a
broad tail of the p.d.f. towards negative values of the turbulent mass flux. In addition,
the presence of mixed fluid in both the rising bubbles and falling spikes results in
the large peak about zero. The skewness (third moment of the distribution) and
kurtosis (fourth moment of the distribution) of the p.d.f. can be used to quantitatively
characterize the shape of the distribution. For the p.d.f. shown in figure 36(c),
Kρ′v′ =9.5 and Sρ′v′ = −2.7. These are similar to those found at At = 0.03 and τ = 1.33
of Kρ′v′ = 10.6 and Sρ′v′ = −3.8. However, the negative tail of the p.d.f. does extend
to larger non-dimensional values of the turbulent mass flux which can be attributed
to the asymmetries between the bubbles and spikes at large At flows. Figure 37
shows the measured energy density spectra of v′, ρ ′ and ρ ′v′. The frequency of these
measurements is restricted to the actual sampling frequency of 83 Hz, or a final spatial
resolution within the Nyquist limit of ∼3.5 cm, which was done to ensure that both the
hot- and cold-wire probes measured the same fluid inside the RT mixing layer. When
compared with the measured spectra for At =0.03, it is evident that only the large-scale
energy-containing region is captured by the diagnostic for At =0.6. The measured
spectrum of figure 37, though limited by the sampling frequency, is the first of its kind
at these high-Atwood-number flows. The energy spectra does not exhibit an inertial
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range as the measurements were made at early time (τ = 0.76) and the turbulence was
not fully mature. This limitation in spectra can be improved by using a customized
commercial probe with a smaller spatial resolution and integrated cold wires. Thus,
our early time (τ � 0.78) high-Atwood measurements at the mixing layer centreline are
consistent with those obtained from the low Atwood numbers (At � 0.04). Although
the penetration of the bubbles and spikes clearly grows asymmetrically, as indicated
by the measurements of hb and hs , time-averaged statistics of velocity and density
fluctuations and the velocity–density correlation at the mixing layer centreline show
striking similarities to the more symmetric lower-Atwood-number mixing layers as
shown in figure 35(c). The only difference that was observed was in the measured
p.d.f. of ρ ′v′ that extended to larger normalized negative magnitudes of the turbulent
mass flux than observed at low Atwood numbers. Table 5(c) reports all the turbulent
statistics measured at three downstream location in a At = 0.6 RT mixing layer. We do
not report measurements of streamwise u′2 as the error associated with measuring the
mean streamwise velocity, U ( = 2 m s−1 at At =0.6), overwhelms the u′2 measurement
(Jorgenson 1971; Andreopoulos 1983; Frota & Moffat 1983; Bruun 1995). The mean
cross-stream velocities V and W are ∼0, making the measurements of v′2 and w′2

reliable (errors of ∼10 %).

5.2.3. Conditional statistics in Rayleigh–Taylor mixing layers

Conditional averaging of our instantaneous measurements using the S3WCA
diagnostic was utilized to separately investigate the bubble and spike dynamics
inside the air–helium RT mixing layer. Although conditional averaging techniques
have been used extensively for shear-driven turbulent flows (Antonia 1981), the
authors believe that the conditional measurements reported here are the first of
their kind for RT experiments and allow investigation of interesting aspects in the
buoyancy-driven mixing layer, which is observed through conventional averaging
techniques.

Bubble and spike dynamics using conditional statistics. The measured data traces were
conditionally sampled using the density fluctuation ρ ′( = ρ − ρ̄mix) in the intermittency
function of (3.10). At the geometric centreline of our air–helium mixing layer, the
average density of the mixing layer is approximately ρmix , so that if ρ ′ > 0, the
passing fluid is composed mostly of air (heavy fluid : spike), the inverse being true
if ρ ′ < 0. The p.d.f.s of ρ ′, v′ and ρ ′v′ plotted (see figure 38a–c) at At = 0.03 and
τ = 1.33 demonstrate this procedure. It is observed that the p.d.f.s for the vertical
(dominant) velocity fluctuations v′, separated into spikes and bubbles, are nearly
symmetric (figure 38b). The lighter fluid, ρ ′ < 0, associated with the rising bubbles
corresponds to mostly positive vertical velocity fluctuations. The opposite is true of
the heavy fluid, ρ ′ > 0. This is expected as RT mixing layers are dominated by the
formation of bubbles and spikes, resulting in a strong negative correlation of density
and vertical velocity fluctuations. Figure 38(b) also shows an overlap of the two
distributions, which implies that the heavy fluid (ρ ′ > 0) does not always correspond
with negative vertical velocity fluctuations, and light fluid (ρ ′ < 0) does not always
correspond with positive vertical velocity fluctuations. The entrainment of the heavy
fluid in the rising bubbles occurs through the Kelvin–Helmholtz-driven roll-up of the
buoyant plumes and shearing of the bubbles and spikes as they move past each other.
The inverse is also true as light fluid is entrained into the falling spikes. Also, as
expected for the low-Atwood-number RT mixing layers, the amount of heavy fluid
entrained into rising bubbles and vice versa appears to be equal about the mixing
layer centreline. This is indicated by the equal and opposite tails of the v′ p.d.f.s
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Figure 38. P.d.f. of ρ ′, v′ and ρ ′v′ at the mixing layer centreline for At = 0.03 and τ = 1.33,
using the sampling condition of ρ ′ > 0 and ρ ′ < 0 to approximate the measured fluctuations as
two fluids (heavy or light). The sampling condition used is illustrated in the p.d.f. of ρ ′ in (a).

at |v′(Atg x/Um)| =0.2 (see figure 38b). The symmetric penetration and behaviour
of bubbles and spikes is also demonstrated in the conditional p.d.f. of the vertical
turbulent mass flux, ρ ′v′. Both conditions, ρ ′ < 0 and ρ ′ > 0, demonstrate identical
p.d.f.s with approximately equal mean vertical turbulent mass fluxes, ρ ′v′, which are
listed in table 8. The original intent of using the density fluctuation (ρ ′ < 0 and
ρ ′ > 0) for the conditional measurements was to separate the flow measurements
into bubbles and falling spikes. However in the p.d.f.s of figure 38(b), it was shown
that when using the ρ ′ < 0 and ρ ′ > 0 conditions to separate the bubble and spike
behaviours of the buoyancy-driven flow, not all of the fluid in either condition was
rising (+v′) or falling (−v′). Therefore it seems appropriate to also examine an
additional conditional statistic based on the sign of the vertical velocity fluctuation v′

to decompose the measurements approximately into bubble and spike dynamics such
that v′ < 0 corresponds to falling spikes and v′ > 0 indicates rising bubbles. P.d.f.s of ρ ′,
v′ and ρ ′v′ at At = 0.03 and τ =1.33 are shown in figure 39(a–c). An illustration of the
vertical velocity condition is shown in the p.d.f. of v′ (figure 39a). The entrainment of
light fluid into the spikes and heavy fluid into the bubbles is clearly evident in the p.d.f.
of ρ ′plotted in figure 39(b). The p.d.f.s of ρ ′v′ based on the of v′, plotted in figure 39(c),
were also found to be approximately identical. A summary of conditional statistics



Detailed measurements of a statistically steady Rayleigh–Taylor mixing layer 179

Conditional averaging

Method 1 Method 2
Conventional

Variables ρ ′ > 0 ρ ′ < 0 v′ > 0 v′ < 0 averaging

v′
rms 0.079 0.079 0.054 0.056 0.10

v′ −0.065 0.063 −0.086 0.085 0

ρ ′
rms 0.011 0.011 0.016 0.015 0.020

f1 0.72 0.27 0.67 0.31 0.51

ρ′v′
�ρ(At gt)

−0.027 −0.026 −0.027 −0.026 −0.026

Table 8. Summary of conditional averages for At =0.03 (�ρ = 0.074 kg m−3)
and τ = 0.78 at the mixing layer centreline (y = 0).

(a)

0
–0.4 –0.2 0 0.2 0.4

2

4

6

8

P
(v

′ /(
A

tg
 (

x/
U

m
))

)

(b) 3.0

2.5

2.0

1.5

1.0

0.5

0
–0.50 –0.25 0 0.25 0.50

P
(ρ

′ /�
ρ

)

(c) 35

30

25

20

15

10

5

0

P
(ρ

′ v
′ /�

ρ
(A

tg
 (

x/
U

m
))

)

v′/(At g (x/Um))

ρ′/�ρ

–0.2 –0.1 0 0.1 0.2

ρ′v′/�ρ(At g (x/Um))

v′ < 0

v′ > 0

v′ < 0

v′ > 0
v′ < 0

v′ > 0

Figure 39. P.d.f. of ρ ′, v′ and ρ ′v′ at the mixing layer centreline for At = 0.03 and τ = 1.33,
using the sampling condition of v′ < 0 and v′ > 0 to approximate the measured fluctuations as
a bubble (rising fluid) or spike (falling fluid). The sampling condition used is illustrated in the
p.d.f. of v′ in (a).

using the described conditions is presented in table 8. It is observed that depending on
whether the mean or r.m.s. of the conditioned v′ distributions is considered based on
conditional parameters, ρ ′ or v′, the magnitudes are approximately equal as expected
at the centreline, with the symmetrical penetration of bubbles and spikes at At = 0.03.
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Figure 40. P.d.f. of ρ ′, v′ and ρ ′v′ at the mixing layer centreline for At = 0.6 and τ = 0.78,
using the sampling condition of ρ ′ > 0 and ρ ′ < 0 to approximate the measured fluctuations as
two fluids (heavy or light). The sampling condition used is illustrated in the p.d.f. of ρ ′ in (a).

However, no inference can be made regarding which conditioning method or velocity
statistic is better suited to determining a characteristic velocity scale for the bubbles
or spikes.

Measurements of various parameters at At =0.6 (described in § 5.2.2) were found to
be consistent with the low At measurements at the mixing layer centreline. Although
the asymmetric behaviour and differing dynamics of the bubbles and spikes were
evident through our imaging measurements of the RT mixing layer (see figure 7b), such
asymmetries were not observed in the turbulent and mixing statistics obtained from the
hot-wire data (on using conventional averaging techniques). Further investigation into
the mixing layer dynamics was performed by re-examining the measured conditional
statistics at At = 0.6 using the conditional sampling procedure described for the low
At measurements. Figure 40(a–c) shows p.d.f.s of ρ ′, v′ and ρ ′v′ for At =0.6 and
τ = 0.78 at the mixing layer centreline (y =0) using the ρ ′ > 0 and ρ ′ < 0 conditions.
Unlike the low At conditional measurements (figure 38a,b), the p.d.f.s of the vertical
velocity fluctuations plotted in figure 40(b) were not symmetric. Instead, more of the
heavier fluid (ρ ′ > 0) was carried back up towards the top of the mixing layer after
being entrained into the rising bubbles, than light fluid being carried down back down
through the mixing layer by the falling spikes. As a result, v′

rms for each condition is not
equal; rather, v′

rms for the fluid associated with ρ ′ > 0 (heavier fluid) is approximately
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Conditional averaging

Method 1 Method 2
Conventional

Variables ρ ′ > 0 ρ ′ < 0 v′ > 0 v′ > 0 averaging

v′
rms 0.45 0.31 0.35 0.25 0.44

v′ −0.21 0.19 −0.33 0.34 0
ρ ′

rms 0.15 0.13 0.24 0.22 0.26
f1 0.76 0.25 0.64 0.34 0.51

ρ′v′
�ρ(At gt)

−0.042 −0.025 −0.046 −0.021 −0.033

Table 9. Summary of conditional averages for At = 0.6 (�ρ = 0.88 kg m−3) and τ = 0.78 at
the mixing layer centreline (y = 0).

Averaging method At τ ρv′/ρ ρv′2/ρ ρv′w′/ρ ρ

Conditional averaging ρ ′ > 0 0.03 1.33 −0.065 0.011 4 × 10−5 1.15
ρ ′ < 0 0.062 0.010 −1.1 × 10−3 1.12
v′ > 0 −0.086 0.010 2.0 × 10−4 1.15
v′ > 0 0.085 0.010 −2.0 × 10−4 1.12

Conventional averaging −0.001 0.010 −5.2 × 10−4 1.14
Conditional averaging ρ ′ > 0 0.6 0.78 −0.24 0.26 −0.004 0.97

ρ ′ < 0 0.19 0.14 0.026 0.51
v′ > 0 −0.39 0.22 0.007 0.86
v′ > 0 0.37 0.22 0.007 0.60

Conventional averaging −0.018 0.21 0.007 0.76

Table 10. Conditional statistics using density-weighted averages.

1.5 times larger (see table 9) than that of the fluid determined from the condition
ρ ′ < 0 (lighter fluid). Imaging measurements at At =0.6 (figure 11) clearly shows
that spikes of heavy fluid penetrate into the light fluid farther than bubbles of light
fluid penetrate into the heavy fluid. Therefore, it can be inferred that negative vertical
velocities associated with the spikes could be larger in magnitude. From the v′ p.d.f., it
was also observed that a larger amount of heavy fluid was entrained into the bubbles
than the amount of light fluid entrained in the faster moving spikes. As a result, the
v′

rms from each of the ρ ′ conditions are not equal. However, v′ for the bubbles and
spikes are approximately equal and opposite, which is expected since, at the mixing
layer centreline, approximately equal quantities of the two fluids are present. Since
the mean of the conditional v′ measurements are approximately equal but opposite in
sign, the net volume flux of the incompressible flow is approximately zero, satisfying
volume conservation at the mixing layer centreline for the incompressible mixing
layer. It is of interest to compare the ρ ′v′ p.d.f. for the vertical turbulent mass flux
for each ρ ′ condition (see figure 40c). Unlike the low At conditional measurements,
the ρ ′v′ p.d.f. is not identical as the heavy fluid is more likely to contain negative
vertical turbulent mass flux of larger magnitude. Once these conditional distributions
are averaged, it is observed that there is an imbalance in the turbulent vertical mass
flux; where ρ ′v′ for the heavy fluid is 1.7 times larger than that for the lighter fluid
(table 10). Thus consistency between the conventional and conditioned averages that
is observed in the low At measurements (where the mixing layer is symmetric) is not
observed in the high At measurements (where the mixing layer is asymmetric). So
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Figure 41. P.d.f. of ρ ′, v′ and ρ ′v′ at the mixing layer centreline for At = 0.6 and τ = 0.78,
using the sampling condition of v′ < 0 and v′ > 0 to approximate the measured fluctuations as
a bubble (rising fluid) or spike (falling fluid). The sampling condition used is illustrated in the
p.d.f. of v′ in (a).

the conditional averaging technique provides a powerful tool to highlight differences
in high At mixing layers and should be used when distinction between bubble and
spike dynamics needs to be made. As with the low At data, conditions of v′ < 0
(falling spike) and v′ > 0 (rising bubble) were also applied to the At = 0.6 data and
conditioned statistics were calculated. Conditional p.d.f.s of ρ ′, v′ and ρ ′v′ are shown
in figure 41(a–c). Similar to the ρ ′ conditioned measurements, it is observed that
the ρ ′v′ p.d.f. for each of the v′ conditions are different, showing a larger negative
vertical turbulent mass flux for the falling fluid (spike), where v′ < 0. These results
are summarized in table 9. The p.d.f.s of v′ also demonstrated that bubbles are not
completely composed of the light fluid and entrain the heavy fluid as they move up
(and vice versa). Thus, it would seem advantageous to also use averages based on
the conditional sampling to determine characteristics associated with the bubbles and
spikes. Specifically, the characteristic velocities for bubbles and spikes are determined
as

v′
1 = v′

∣∣
v′ < 0

and v′
2 = v′

∣∣
v′ > 0

, (5.27)
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where the subscripts 1 and 2 denote the heavy (spike) and light (bubble) conditions.
Using these definitions, characteristic velocities for the spike and bubble dynamics
for At = 0.6 at τ =0.78 are v′

1 = −0.39 m s−1 and v′
2 = 0.37 m s−1. These velocities also

satisfy volume conservation for the incompressible flow at the mixing layer centreline,
where approximately equal amounts of fluid 1 and 2 are found, implying that the
characteristic velocities for the turbulent bubbles and spikes should be of opposite sign
but approximately equal in magnitude. The magnitudes of v′

1 and v′
2 are also similar

to v′
rms = 0.44 m s−1 from the conventional averaging measurement. The r.m.s. of the

centreline vertical velocity fluctuations would have been typically considered a relevant
velocity scale for the mixing layer at low Atwood numbers, where the bubble and
spike dynamics are symmetric (Ramprabhu & Andrews 2004; Banerjee & Andrews
2006). A summary of these statistics determined using the described conditioning
procedures and density-weighted averages are included in table 10. The tabulated
values show a dominance of the Reynolds stress in the vertical direction (direction
of gravity) over the horizontal direction for both the conventional and conditional
measurements. In addition, the off-diagonal Reynolds stress component is small when
compared with the diagonal components, due to symmetry of the mushroom-shaped
plumes.

This framework can be further extended to include the vertical turbulent mass flux,
where the conventional miscible measurement is denoted by the subscript 0,

a0 =
ρ ′v′

ρ
. (5.28)

The quantity a0 is a fundamental parameter for variable density turbulence models
such as the BHR model (Besnard et al. 1992). Steinkamp (1995) derived a two-fluid
definition for the turbulent mass flux (immiscible case),

a2 =
fv,1fv,2(ρ1 − ρ2)(v

′
1 − v′

2)

ρ
. (5.29)

It is useful to delineate differences in the vertical turbulent mass flux between the
miscible (experimental) and immiscible (two-fluid) approaches to buoyancy-driven
turbulence. From the miscible At =0.03 case summarized in table 8, the turbulent mass
flux parameters are a0 = −0.0014 and a2 = −0.0021. A lower value of a0 illustrates that
molecular mixing in the current experiment reduces the magnitude of the turbulent
mass flux when compared with an idealized immiscible two-fluid mixing layer. This is
also observed in the At = 0.6 case summarized in table 9, which gives a0 = −0.070 and
a2 = −0.12. Following the analysis in our θ definition, we identify a mixing parameter
based on the vertical turbulent mass flux as follows:

κ = 1 − a0

a2

, (5.30)

where κ = 1 when a0 is zero (e.g. when the mixing layer is completely molecularly
mixed), and κ = 0 when a0 = a2 when there is only interpenetration of the heavy and
light fluids but no molecular mixing (immiscible two-fluid case). For the measurements
summarized in tables 8 and 9 for At = 0.03 and At = 0.6, the values of the turbulent
mixing parameter κ are 0.33 and 0.42, respectively. This conditioning procedure
has been extended to the remaining experimental measurements at the mixing layer
centreline to determine the values of κ . Figure 42 includes these results for both the
At = 0.03 and At = 0.6 data sets plotted versus τ and Reynolds number [Rev′ = (hb +
hs)v

′
rms/υmix]. The molecular mixing parameter, θ , is also shown for comparison. The
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Figure 42. Evolution of the turbulent mass flux mixing parameter, κ , at the mixing layer
centreline for At = 0.03 and At =0.6 plotted versus τ and Reynolds number. The molecular
mixing parameter, θ , is also shown for comparison.

average turbulent mass flux mixing parameter for all experiments at the mixing layer
centreline is κ = 0.32, which is smaller than the measurements of θ = 0.70 at late
time. The differing magnitudes of the two measures of mixing, κ and θ , implies
that the two mixing parameters capture different physical effects within the mixing
process. The turbulent mass flux mixing parameter, κ , relies on measurement of
ρ ′v′, which is directly related to the growth of the mixing layer and production of
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turbulent kinetic energy. Coupling between the vertical velocity fluctuation, v′
rms , and

the density fluctuation comes through buoyancy. Such buoyancy coupling is a dynamic
effect giving rise to an acceleration of RT plumes, which in turn feel the effect of drag
and shear. Inspection of figure 42 shows a time delay for κ compared with θ , and we
attribute the delay to the acceleration and drag on the velocity fluctuation. Therefore,
the turbulent mass flux mixing parameter, κ , provides an alternative method for
examining turbulent mixing in Rayleigh–Taylor mixing layers, which has more direct
physical connections to the self-similar and buoyancy-driven growth of the mixing
layer.

6. Conclusions
The present air–helium gas channel experiment has been used to study the

development of RT mixing, and experimental measurements have been reported
for Atwood numbers ranging from 0.03 to 0.6. The experiment places a heavy fluid
(air) over a light fluid (air/helium) with a long duration to study the resultant RT
mixing. To eliminate gravity currents that develop for At > 0.1, the exit plenum was
redesigned from previous work by introducing an exit splitter plate that served to
prevent heavy fluid from falling in the exit plenum and forming gravity currents
that flowed back into the channel. Diagnostics used include digital image analysis
and hot-wire anemometry. We report measured density profiles (using digital image
analysis) across the RT mixing layer at Atwood numbers of 0.04, 0.26, 0.47 and
0.6. The self-similarity growth rate parameters αb and αs of (1.1) exhibit the same
trend as in the LEM experiments. The growth rate parameter for the spikes increases
from a value of αs =αb = 0.068 ± 0.005 at the At =0.04 experiment to a value of
αs = 0.081 ± 0.009 at the large At =0.6 experiment. Various definitions used over
the last decade for measuring the growth parameter α were explored. It was found
that α measured by using a virtual origin technique, based on half-mix-width data
(Snider & Andrews 1994), was identical to the value measured by using a self-
similar analysis (Ristorcelli & Clark 2004). Other definitions were also compared and
cross-related, including a moving window technique to obtain a second-order best
fit line through the half-mix-width data (Banerjee & Andrews 2006), and a growth
parameter based on centreline velocity fluctuations (Ramaprabhu & Andrews 2004).
It was found that although the above definitions gave different values of the growth
parameter at early times, once the flow becomes self-similar they all gave closely
similar values of α of αb,V O =0.069, αb,MW = 0.065, αb,RC = 0.068 and αCL = 0.067,
respectively.

Two hot-wire flow diagnostics were developed to measure turbulence and mixing
statistics in the RT mixing layer. The first hot-wire diagnostic uses an MPMO single-
wire technique, and is based on evaluating the wire response function to variations
in density, velocity and orientation, and gives time-averaged statistics inside the
mixing layer. The second hot-wire diagnostic utilizes the concept of temperature as a
fluid marker, and employs an S3WCA technique to measure both time-averaged and
instantaneous statistics. Both of these diagnostics have been used in a low-Atwood-
number (At � 0.04), small density difference regime, which allowed validation of the
diagnostics with similar experiments done in a hot-water/cold-water water channel
facility. The MPMO method was found to be limited to At < 0.25 because it assumes
a linear voltage–density response that fails to account for a nonlinear voltage–density
response when At > 0.25. The S3WCA method was used to report the first detailed
statistical measurements in a large-Atwood-number (At = 0.6) RT mixing layer. From
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our hot-wire measurements, it was observed that the internal structure of the self-
similar RT mixing layer is anisotropic, with vertical r.m.s. velocity fluctuation v′

rms

dominating the horizontal (streamwise and transverse) u′
rms and w′

rmscomponents. The
ratio of v′

rms/u
′
rms was measured as ∼1.8, and appears to be constant across the

RT mixing layer, supporting the observation that mushroom-shaped structures are
convected up and down the RT mixing layer with little change in shape. An energy
budget analysis using the measured data showed a 48 % kinetic energy dissipation at
At = 0.04, which was attributed to the presence of highly three-dimensional structures
at all scales of the flow. This value for our air–helium experiment compares well with
the hot/cold water channel value of 49 %. Similarly at At = 0.04, the molecular mix
fraction, θ , was determined to be ∼0.70 in the self-similar region, and approximately
constant across the mix. The primary momentum turbulent transport flux ρ ′v′ has been
used in conjunction with the gradient diffusion hypothesis to obtain measurements
of the gradient diffusion model constant Cµ as 0.288. The integrated dissipation D
(from an energy budget) was also used in a mixing-length model to check the value
of Cµ and was measured as 0.26 in good agreement with the gradient diffusion
value. Additional statistical data have also been presented for cross-correlation mix
profiles that may be used to validate direct numerical simulations and turbulence
models such as the Reynolds stress/Boussinesq models, spectral transport model and
two-fluid models of RT mixing.

Also reported for the first time experimentally are instantaneous measurements
of the vertical turbulent mass flux for a Rayleigh–Taylor mixing layer, ρ ′v′. At the
centreline of the mixing layer for At = 0.03, where production of turbulent kinetic
energy is at its maximum, the p.d.f. of the primary turbulent mass flux is significantly
skewed. Rather than being symmetric about a flux of zero, as found with the
horizontal turbulent mass fluxes, the vertical turbulent mass flux is likely to be
negative, with a narrow peak at zero associated with mixed fluid. The likelihood of
large negative turbulent mass fluxes decreases away from the mixing layer centreline
as the production of turbulent kinetic energy decreases and smaller average turbulent
mass fluxes are found. The universal p.d.f. of ρ ′v′ at the mixing layer centreline
was found for non-dimensional times τ = 0.76–1.33 at low Atwood number when
the turbulent mass flux was non-dimensionalized using a velocity scale of Atgx/Um

and �ρ as the corresponding density scale. The energy density spectra for ρ ′v′

was measured experimentally for the first time in a Rayleigh–Taylor mixing layer.
For the non-dimensional times measured, the distribution of energy for fluctuations
of the primary turbulent mass flux closely follows the behaviour of the turbulent
fluctuations of the vertical velocity component. This illustrates the importance of the
velocity spectrum for its influence on ρ ′v′and the role of the vertical turbulent mass
flux on the growth of the mixing layer.

The S3WCA diagnostic was successfully used at At =0.6 to obtain the first statistical
experimental measurements of v′2, w′2, ρ ′2 and ρ ′v′ at a large Atwood number.
However, special considerations had to be made that limit the performance of the
diagnostic. Measured time-averaged statistics of the velocity and density fluctuations
at the mixing layer centreline from 0.44 � τ � 0.78 agree well with small-Atwood-
number (At � 0.04) results when non-dimensionalized with self-similar velocity and
density scales. Although conventional time-averaging did not illustrate the uniqueness
of large-Atwood-number turbulence, conditional statistics highlight differences in
the mixing layer resulting from the developing asymmetry. In particular, a larger
turbulent mass flux, ρ ′v′, and larger vertical velocity fluctuations are observed for
the downward-moving spikes. Conditional statistics based on the sign of the vertical
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velocity fluctuations effectively separated the dynamics of the mixing layer into the
bubble and spike dynamics. Using density-weighted averages of the bubble and spike
distributions may provide a basis for describing the non-Boussinesq turbulent flow.
An interesting consequence of using conditional analysis is the ability to identify a
new turbulent mixing parameter based on the vertical turbulent mass flux, which is
similar to the molecular mixing parameter, θ , defined for the density variance. This
turbulent mass flux mixing parameter, κ , relies on measurement of ρ ′v′, which is
directly related to the growth of the mixing layer and production of turbulent kinetic
energy and may provide an alternative method for examining turbulent mixing in
Rayleigh–Taylor mixing layers, which has more direct physical connections to the
self-similar and buoyancy-driven growth of the mixing layer. The use of conditional
statistics allows for measurement of the turbulent mass flux for both the miscible and
the corresponding immiscible case.

This paper is based upon the work that is supported by the US Department of
Energy under contract number DE-FG03-02NA00060. The authors thank Nicholas
Mueschke and Michael Peart for their help in the visualization analysis and
construction of the facility.
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